Physics / Basic Vectors

Topics

1

Introduction

2

Angle Between Vectors

3

Important Results:

4

Multiplication of a

5

Unit Vector :

6

Co-ordinate Systems:

7

Rectangular

8

Concept of Equilibrium :

9

Displacement Vector:

10

Position Vector:

11

Product of Vectors

12

Projection

13

(2) Cross

14

Properties of vector (or

15

Solved Example

Introduction

History :

There were many scientists involved in developing vectors over several years. Some of them were Caspar Wessel (1745-1818), Jean Robert Argand (1768-1822), Carl Friedrich Gauss (17771855),William Rowan Hamilton. Finally it was Hermann Grassmann (1809-1877) who developed and expanded on the concept of vectors.
Because of this development, physical quantities were divided into two categories
(a) vectors (b) scalars.

Scalars:

Physical quantities are completely specified by a number, which can be positive or negative, and a unit of measure.

An example is temperature, a quantity that is specified completely by a number and a unit (as in \(21^{\circ}C\) or 70 F ).

Examples of scalar quantities are : mass, distance, average speed, instantaneous speed, energy, pressure, temperature, density, charge etc.
Scalars follow the ordinary arithmetical laws of addition, subtraction, multiplication, and division.

Vectors :

Any physical quantity which in order to be completely specified, requires not only a number and a unit but also a direction in space and also follows laws of vector algebra are known as vectors.
The laws of additioin and substraction of vectors require geometrical techniques.
Examples of vectors are: displacement, velocity, acceleration, force, momentum, impulse, angular momentum, torque, angular impulse, gravitational field, electric field, magnetic field. If we are talking about directions, we should know how to write direction in English. In English sentences, we write directions as \(30^{\circ}\) east of north, \(60^{\circ}\) south of east, north-east, south-west etc.

Representation of Vector

The representation of vector will be complete if it gives us direction and magnitude.

Symbolic form:

\(\overrightarrow{v},\overrightarrow{a},\overrightarrow{F},\overrightarrow{s}\) used to separate a vector quantity from scalar quantities ( \(u,i,m\) ). Some books also represent vector by bold letter. Such as \(\mathbf{s},\mathbf{v},\mathbf{a}\).

Graphical form:

A vector is represented by a directed straight line, having the magnitude and direction of the quantity represented by it.
e.g. if we want to represent a force of 5 N acting \(45^{\circ}N\) of E

Step:

(i) We choose suitable co-ordinates system.
(ii) We choose a convenient scale like \(1\text{ }cm \equiv 1\text{ }N\).
(iii) for the direction \(45^{\circ}N\) of E , the reference is

East then turning \(45^{\circ}\) towards North.
(iv) We draw a line of length equal in magnitude and in the direction of vector to the chosen quantity.

(v) We put arrow in the direction of vector.

\[\overrightarrow{AB}\]

Magnitude of vector:

\[\overrightarrow{AB} \mid = 5\text{ }N\]

\[1\text{ }cm \equiv 1\text{ }N\]

By definition magnitude of a vector quantity is scalar and is always positive.

Terminology of Vectors

Parallel vector: If two vectors have same direction, they are parallel to each other. They may be located anywhere in the space.

Antiparallel vectors: When two vectors are in opposite direction they are said to be antiparallel vectors.

Equality of vectors: When two vectors have equal magnitude and are in same direction and represent the same quantity, they are equal.
i.e. \(\ \overrightarrow{a} = \overrightarrow{b}\)

Thus when two parallel vectors have same magnitude they are equal. (Their initial point & terminal point may not be same)

Negative of a vector: When a vector have equal magnitude and is in opposite direction, it is said to be negative vector of the former.
i.e. \(\overrightarrow{a} = - \overrightarrow{b}\ \) or \(\ \overrightarrow{b} = - \overrightarrow{a}\)

Thus when two antiparallel vectors have same magnitude they are negative of each other. Vector shifting is allowed without change in their direction.
Let two vectors \(\overrightarrow{a}\) and \(\overrightarrow{b}\) are represented as -

Vector shifting is allowed without changing their direction as vector \(\overrightarrow{a}\) shifted in figure, from position (i) to position(ii).
If \(|\overrightarrow{a}| = |\overrightarrow{b}|\) and \(\theta_{a} = \theta_{b}\) then both vector are equal vectors.
If \(\theta_{a} = \theta_{b}\) then both vector are parallel vectors.

Illustration :

The vector \(- \overrightarrow{A}\) is:
(A) greater than \(\overrightarrow{A}\) in magnitude
(B) less than \(\overrightarrow{A}\) in magnitude
(C) in the same direction as \(\overrightarrow{A}\)
( D \(\ ^{*}\) ) in the direction opposite to \(\overrightarrow{A}\)
(E) perpendicular to \(\overrightarrow{A}\)

Sol. (D)

Angle Between Vectors

Angle between two vectors \(\overrightarrow{a}\) and \(\overrightarrow{b}\) is defined as the smaller angle between the tail's or the head's of the two vectors.

Illustration :

What is the angle between?
(i) \(\overline{AB}\) and \(\overline{AC}\) Ans. \(60^{\circ}\)
(ii) \(\overline{AB}\) and \(\overline{BC}\) Ans. \(120^{\circ}\)

Equilateral triangle

Laws of addition and subtraction of vectors:

Triangle rule of addition:

Steps for adding two vectors representing same physical quantity by triangle law :
(i) Keep vectors such that tail of one vector coincides with head of other.
(ii) Join tail of first to head of the other by a line with arrow at head of the second.
(iii) This new vector is the sum of two vectors. (also called resultant)

For Example :

To add \(\overrightarrow{CD}\) to \(\overrightarrow{AB}\), place tail of \(\overrightarrow{CD}\) at the head of \(\overrightarrow{AB}\). The sum is the vector from the tail of \(\overrightarrow{AB}\) to head of \(\overrightarrow{CD}\) i.e. \(\overrightarrow{AD}\).

\[\overrightarrow{AB} + \overrightarrow{CD} = \overrightarrow{AD}\]

Graphical Representation :

(i)

(ii)

Polygon Law of addition:

This law is used for adding more than two vectors. This is extension of triangle law of addition. We keep on arranging vectors s.t. tail of next vector lies on head of former.
When we connect the tail of first vector to head of last we get resultant of all the vectors.

\[\overrightarrow{P} = (((\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c}) + \overrightarrow{d}) = ((\overrightarrow{c} + \overrightarrow{a}) + \overrightarrow{b}) + \overrightarrow{d}\]

[Associative Law]

Parallelogram law of addition:

Steps:

(i) Keep two vectors such that their tails coincide.
(ii) Draw parallel vectors to both of them considering both of them as sides of a parallelogram.
(iii) Then the diagonal drawn from the point where tails coincide represents the sum of two
vectors, with its tail at point of coincidence of the two vectors.

\[\underset{\overrightarrow{a}}{\overset{/\overrightarrow{b}}{︸}}\]

Steps :

(i)

(ii)

(iii)

\[\overrightarrow{AC} = \overrightarrow{a} + \overrightarrow{b}\]

\(\overrightarrow{AC} = \overrightarrow{a} + \overrightarrow{b}\) and \(\overrightarrow{AC} = \overrightarrow{b} + \overrightarrow{a}\) thus \(\overrightarrow{c} = \overrightarrow{a} + \overrightarrow{b} = \overrightarrow{b} + \overrightarrow{a}\) [Commutative Law]

So, the full parallelogram would look like this

\[\overrightarrow{c} = \overrightarrow{a} + \overrightarrow{b};\overrightarrow{d} = \overrightarrow{a} - \overrightarrow{b}\]

Illustration :

The vectors \(\overrightarrow{a},\overrightarrow{b}\) and \(\overrightarrow{c}\) are related by \(\overrightarrow{c} = \overrightarrow{a} + \overrightarrow{b}\). Which diagram below illustrates this relationship?
(A)

(C)

(D)

(E) None of these

Sol. (B) \(\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{c}\)

Derivation of general formula :

\[\begin{matrix} \overrightarrow{R} & \ = \overrightarrow{a} + \overrightarrow{b},|\overrightarrow{R}| = R,|\overrightarrow{a}| = a,|\overrightarrow{\text{ }b}| = b \\ R & \ = \sqrt{(a + bcos\theta)^{2} + (bsin\theta)^{2}} \\ & \ = \sqrt{a^{2} + b^{2} + 2abcos\theta} \end{matrix}\]

as in figure angle between \(\overrightarrow{a}\) and \(\overrightarrow{R}\) is \(\alpha\).
\[tan\alpha = \frac{bsin\theta}{a + bcos\theta}\]

Illustration :

Two forces \(P\) and \(Q\) are in ratio \(P:Q = 1:2\). If their resultant is at an angle tan \(\ ^{- 1}\left( \frac{\sqrt{3}}{2} \right)\) to vector \(P\), then angle between \(P\) and \(Q\) is :
(A) \(\tan^{- 1}\left( \frac{I}{2} \right)\)
(B) \(45^{\circ}\)
(C) \(30^{\circ}\)
(D*) \(60^{\circ}\)

Sol. \(tan\alpha = \frac{Qsin\theta}{P + Qcos\theta}\)

\[\begin{matrix} & \frac{\sqrt{3}}{2} = \frac{sin\theta}{\frac{P}{Q} + cos\theta} \Rightarrow \frac{\sqrt{3}}{2} = \frac{sin\theta}{(1/2) + cos\theta}\ \Rightarrow \ \frac{3}{4} = \left( \frac{2sin\theta}{1 + 2cos\theta} \right)^{2} \\ & \ \Rightarrow \ 3(1 + 2cos\theta)^{2} = 16\sin^{2}\theta \\ & \ \Rightarrow \ 3\left( 1 + 4\cos^{2}\theta + 4cos\theta \right) = 16\left( 1 - \cos^{2}\theta \right) \\ & \ \Rightarrow \ 3 + 12\cos^{2}\theta + 12cos\theta = 16 - 16\cos^{2}\theta \\ & \ \Rightarrow \ 28\cos^{2}\theta + 12cos\theta - 13 = 0 \Rightarrow \ cos\theta = 1/2, - 0.92 \end{matrix}\]

Important Results:

The angle between \(\overrightarrow{a}\) and \(\overrightarrow{b}\) is \(\theta\) and resultant \(\overrightarrow{R} = \overrightarrow{a} + \overrightarrow{b}\).
(i) If \(\theta = 0^{\circ}\ \Rightarrow \overrightarrow{a}\|\overrightarrow{b}\)
then, \(|\overrightarrow{R}| = |\overrightarrow{a}| + |\overrightarrow{b}|\)
& \(|\overrightarrow{R}|\) is maximum
(ii) If \(\theta = \pi\ \Rightarrow \overrightarrow{a}\) anti \(\|\overrightarrow{b}\)
then, \(|\overrightarrow{R}| = |\overrightarrow{a}| - |\overrightarrow{b}| \mid\)
\(\&|\overrightarrow{R}|\) is minimum
(iii) If \(\theta = \pi/2\ \Rightarrow \overrightarrow{a}\bot\overrightarrow{b}\)
\[R = \sqrt{a^{2} + b^{2}} \]& \(tan\alpha = b/a(\alpha\) is angle with \(\overrightarrow{a})\)

(iv) If \(|\overrightarrow{a}| = |\overrightarrow{b}| = a\)
\[|\overrightarrow{R}| = 2acos\theta/2 \]& \(\alpha = \theta/2\)

(v) \(\ \) If \(|\overrightarrow{a}| = |\overrightarrow{b}| = a\&\theta = 2\pi/3\)
then \(|\overrightarrow{R}| = a\)

Illustration :

Forces of magnitudes \(6N\) and \(4N\) are acting on the body. Which of the following can be the resultant of the two?
(a) \(11N\)
(b) 2 N
(c) 10 N
(d) \(IN\)
(e) \(8N(\) f \()0N(g)\)
\[7N\]

Sol. \(\ F_{\text{res}\text{~}}\) lies between \(F_{\text{res}\text{~}}\) (max.) and \(F_{\text{res}\text{~}}\) (min.).
\(F_{\text{res}\text{~}}(max) = .10N\) and \(F_{\text{res}\text{~}}(min) = .2N\)
Thus, options \(b,c,e\), and \(g\) are correct.

Illustration :

The resultant of two forces of magnitudes \(4N\) and \(4\sqrt{2}N\) makes \(90^{\circ}\) with the smaller force. Then angle between those two forces is ?

Sol.

\[{cos\theta = \frac{4}{4\sqrt{2}} = \frac{1}{\sqrt{2}} }{\theta = 45^{\circ} }\]angle between forces \(4N\) and \(4\sqrt{2}N\) is \(135^{\circ}\).

Practice Exercise

Q. 1 Two vectors \(\overrightarrow{P}\) & \(\overrightarrow{Q}\) are arranged in such a way that they form adjacent sides of a parallelogram as shown in figure

Which of the following options have correct relationship
(A) \(\overrightarrow{Q} = \overrightarrow{R} + \overrightarrow{S}\)
(B) \(\overrightarrow{R} = \overrightarrow{P} + \overrightarrow{Q}\)
(C) \(\overrightarrow{R} = \overrightarrow{P} + \overrightarrow{S}\)
(D) \(\overrightarrow{S} = \overrightarrow{Q} - \overrightarrow{P}\)
Q. 2 Two vectors of \(\mathbf{10}\) units & \(\mathbf{5}\) units make an angle of \(\mathbf{120}^{\mathbf{\circ}}\) with each other. Find the magnitude & angle of resultant with vector of \(\mathbf{10}\) unit magnitude.

Answers
Q. 1 (B), (D) Q. \(25\sqrt{3},30^{\circ}\)
Multiplication of a vector by a scalar :

Lets say we have a vector \(\overrightarrow{a}\) and \(k\) is a Scalar. Vector \(\overrightarrow{b} = k\overrightarrow{a}\) is defined as a vector of magnitude \(|ka|\).
If k is a positive then direction of \(\overrightarrow{b}\) is along \(\overrightarrow{a}\).
If \(k\) is negative then direction of \(\overrightarrow{b}\) is opposite to \(\overrightarrow{a}\).
If

\[\begin{matrix} & \ |k| > 1 \Rightarrow |\overrightarrow{\text{ }b}| > |\overrightarrow{a}| \\ & \ |k| < 1 \Rightarrow |\overrightarrow{\text{ }b}| < |\overrightarrow{a}| \end{matrix}\ \overset{\overset{\phantom{\overrightarrow{a}\ }}{\rightarrow}3\overrightarrow{a}}{\underset{- 1.5\overrightarrow{a}}{\longrightarrow}}\]

A vector may be multiplied by a pure number or by a scalar.
When a vector is multiplied by a scalar, the new vector may become a different physical quantity for example, when velocity (a vector) is multiplied by time (a scalar) we obtain a displacement (a vector).

Subtraction of vectors :

To subtract two vectors, reverse the direction of the vector being subtracted and add the inverted vector to the vector from which you are subtracting.
Let say we want to obtain \(\overrightarrow{a} - \overrightarrow{b}\)

\[\overrightarrow{s} = \overrightarrow{a} - \overrightarrow{b} = \overrightarrow{a} + ( - \overrightarrow{b})\]

i.e. \(\overrightarrow{a} - \overrightarrow{b}\) can be understood as summation of \(\overrightarrow{a} + ( - \overrightarrow{b})\)

For \(\overrightarrow{s} = \overrightarrow{a} - \overrightarrow{b}\)

Steps :

(i) Put tail of \(\overrightarrow{b}\) at head of \(\overrightarrow{a}\)
(ii) Take- \(\overrightarrow{b}\)
(iii) Resultaul vector \(\overrightarrow{s}\) from tail of \(\overrightarrow{a}\) to head of \(- \overrightarrow{b}\).
(iv) Angle between \(\overrightarrow{a}\) and \(\overrightarrow{b}\) is \(\theta\), then angle between \(\overrightarrow{a}\) and \(- \overrightarrow{b}\) or between \(- \overrightarrow{a}\) and \(\overrightarrow{b}\) is \(\left( 180^{\circ} - \theta \right)\).
the angle between \(\overrightarrow{a}\) and \(- \overrightarrow{b}\) becomes \(\pi - \theta\)
so we get \(s = \sqrt{(a + bcos(\pi - \theta))^{2} + (bsin(\pi - \theta))^{2}}\)

\[= \sqrt{a^{2} + b^{2} - 2abcos\theta}\]

and \(tan\alpha = \frac{bsin(\pi - \theta)}{a + bcos(\pi - \theta)} = \frac{bsin\theta}{a - bcos\theta}\)

Illustration :

Two vectors of equal magnitude 2 are at an angle of \(60^{\circ}\) to each other find magnitude of their sum & difference.
Sol. \(|\overrightarrow{a} + \overrightarrow{b}| = \sqrt{2^{2} + 2^{2} + 2 \times 2 \times 2cos60^{\circ}} = \sqrt{4 + 4 + 4} = 2\sqrt{3}\)

\[|\overrightarrow{a} - \overrightarrow{b}| = \sqrt{2^{2} + 2^{2} + 2 \times 2 \times 2cos12\theta^{\circ}} = \sqrt{4 + 4 - 4} = 2 \]

Zero vector \(\rightarrow\) When \(\overrightarrow{a} = \overrightarrow{b}\) & if want to find \(\overrightarrow{a} - \overrightarrow{b} =\) zero vector. It is a vector with zero magnitude & undefined direction.

Illustration :

It is given that \(\overrightarrow{A} + \overrightarrow{B} = \overrightarrow{C}\) with \(\overrightarrow{A}\bot^{\text{ar}\text{~}}\overrightarrow{B}\) and
\(|\overrightarrow{A}| = 10,|\overrightarrow{C}| = 20\).
Find \(|\overrightarrow{B}|\) and angle of \(\overrightarrow{C}\) with \(\overrightarrow{A}\)

Sol. \(\ cos\alpha = \frac{|\overrightarrow{A}|}{|\overrightarrow{C}|}\)
\(\alpha = 60^{\circ}\) and \(\theta = 30^{\circ}\)
\[{\overrightarrow{A} + \overrightarrow{B} = \overrightarrow{C} }{|\overrightarrow{C}|^{2} = |\overrightarrow{A}|^{2} + |\overrightarrow{B}|^{2} }\]

\[|\overrightarrow{B}| = 10\sqrt{3}\]

Illustration :

Two vectors \(\overrightarrow{A}\) and \(\overrightarrow{B}\) are drawn from a common point and \(\overrightarrow{C} = \overrightarrow{A} + \overrightarrow{B}\)
(A*) If \(C^{2} = A^{2} + B^{2}\), the angle between vectors \(\overrightarrow{A}\) and \(\overrightarrow{B}\) is \(90^{\circ}\)
(B*) If \(C^{2} < A^{2} + B^{2}\), the angle between \(\overrightarrow{A}\) and \(\overrightarrow{B}\) is greater than \(90^{\circ}\)
(C*) If \(C^{2} > A^{2} + B^{2}\) then angle between the vectors \(\overrightarrow{A}\) and \(\overrightarrow{B}\) is between \(0^{\circ}\) and \(90^{\circ}\).
( \(D^{*}\) ) If \(C = A - B\), angle between \(\overrightarrow{A}\) and \(\overrightarrow{B}\) is \(180^{\circ}\).
Sol. \(C^{2} = A^{2} + B^{2} + 2ABcos\theta\)

\[\text{~}\text{If}\text{~}\theta = 90^{\circ}\]

then \(C^{2} = A^{2} + B^{2}\)

\[\text{~}\text{if}\text{~}\theta > 90^{\circ}\]

then \(C^{2} = A^{2} + B^{2} + 2ABcos\theta < A^{2} + B^{2}\)
\(\therefore\ cos\theta\) will be negative

\[\text{~}\text{If}\text{~}\theta < 90^{\circ}\]

then \(C^{2} = A^{2} + B^{2} + 2ABcos\theta > A^{2} + B^{2}\)
\(\therefore\ \) If \(C = A - B \Rightarrow \theta = 180^{\circ}\)

Unit Vector :

(i) Aunit vector is vector of unit length used to specify direction.
(ii) A unit vector is a dimensionless vector with a magnitude of exactly 1 .
(iii) Unit vectors are used to specify a direction and have no other physical significance

A unit vector in direction of vector \(\overrightarrow{A}\) is represented as \(\widehat{A}\)
& \(\widehat{A} = \frac{\overrightarrow{A}}{|\overrightarrow{A}|}\)

or \(\overrightarrow{A}\) can be expressed in terms of a unit vector in its direction i.e. \(\overrightarrow{A} = |\overrightarrow{A}|\widehat{A}\)

Unit Vectors along three coordinates axes:

unit vector along \(x\)-axis is \(\widehat{i}\)
unit vector along \(y\)-axis is \(\widehat{j}\)
unit vector along \(z\)-axis is \(\widehat{k}\)

Illustration :

The value of a unit vector in the direction of vector \(\overrightarrow{A} = 5\widehat{i} - 12\widehat{j}\) is \(\_\_\_\_\) ?

Sol. \(\ |\overrightarrow{A}| = \sqrt{5^{2} + 12^{2}} = 13\)
\[\widehat{A} = \frac{\overrightarrow{A}}{|\overrightarrow{A}|} = \frac{5\widehat{i} - 12\widehat{j}}{13}\]

Co-ordinate Systems:

Co-ordinate systems are used to describe the position of a point in space.
Coordinate system consists of:
(i) A fixed reference point called the origin
(ii) Specific axes with scales and labels
(iii) Instructions on how to label a point relative to the origin and the axes

Cartesian Coordinate System :

Also called rectangular coordinate system
x - and y - axes intersect at the origin
Points are labeled ( \(x,y\) )
In figure, points \(P\) and \(Q\) are shown as \((5,3)\) and \(( - 3,4)\) respectively.

Illustration :

Express the vector in unit - vector notation.

Sol. \(\ 2\widehat{i}\)

Illustration :

Acceleration due to gravity is always downwards. How will you write it vectorially if \(+ Y\) is (a) downwards (b) upwards.

Sol. (a) downwards taken as postive \(Y\) direcation.

\[\overrightarrow{a} = g\widehat{j}\]

(b) upwards taken as postive \(Y\) direcation.

\[\overrightarrow{a} = - g\widehat{j}\]

Rectangular Component (resolution) of vectors:

(components means parts)
We can move from tail of \(\overrightarrow{a}\) to its head via various paths. But, if we move with \(\overrightarrow{a}\) as the diameter of circle as shown, then the two vectors ( \(\overrightarrow{c}\&\overrightarrow{\text{ }d}\) and \({\overrightarrow{a}}_{x}\&{\overrightarrow{a}}_{y}\) ) would be perpendicular to each other. Such perpendicular vectors are called rectangular components of \(\overrightarrow{a}\). But, if

we choose \({\overrightarrow{a}}_{x}\) & \({\overrightarrow{a}}_{y}\). Then we can write them in terms of standard unit vectors \(\widehat{i}\&\widehat{j}\) respectively. Then we would say that \(a_{x}\) is the component of vector along the x -axis & \(a_{y}\) is the component of vector along y -axis. Now according to triangle law of addition:
\[\overrightarrow{a} = {\overrightarrow{a}}_{x} + {\overrightarrow{a}}_{y} \]So, we write \(\overrightarrow{a} = a_{x}(\widehat{i}) + a_{y}(\widehat{j}) = acos\theta(\widehat{i}) + asin\theta(\widehat{j})\)
This is a very convenient form of representing vectors.
\(acos\theta\) is known as component of \(\overrightarrow{a}\) along x -axis \(\left( a_{x} \right)\)

\(asin\theta\) is known as component of \(\overrightarrow{a}\) along \(y\)-axis ( \(a_{y}\) )
This is best form of representing vectors because we can do exact addition and subtraction using simple laws of algebra without needing to draw vectors

Illustration :

A body is thrown from ground making an angle \(\theta\) with speed \(u\) from horizontal. Write its initial velocity in unit vector notation.

Sol.

\[\overrightarrow{u} = ucos\theta\widehat{i} + usin\theta\widehat{j}\]

Results :

  1. Unit vector along \(\overrightarrow{A}\) is \(\widehat{A}\).

Since, \(\overrightarrow{A} = |\overrightarrow{A}|\widehat{A}\)
& \(\overrightarrow{A} = |\overrightarrow{A}|(cos\theta\widehat{i} + sin\theta\widehat{j})\)
\[\widehat{A} = \widehat{i}cos\theta + \widehat{j}sin\theta \]2. If components of a vector along \(x\& y\)-axis are known, then that vector can be completely represented as
\[\overrightarrow{A} = A_{x}\widehat{i} + A_{y}\widehat{j} \]3. \(|\overrightarrow{A}| = \sqrt{A_{x}^{2} + A_{y}^{2}}\)
4. \(tan\theta = \left( \frac{A_{y}}{A_{x}} \right)\)

\(\theta\) is angle with x -axis
5. The components can be positive or negative and will have the same units as the original vector
6. The signs of the components will depend on the angle

y
\(A_{s}\) negative \(A_{s}\) positive
\(A_{y}\) positive \(A_{,}\)positive
\(A_{x}\) negative \(A_{s}\) positive
\(A_{y}\) negative \(A_{y}\) negative

Illustration :

Express the given vector \(\overrightarrow{A}\) (shown graphically) in unit vector notation.

(i)

(ii)

(iii)

(iv)

Sol.
(i) \(\overrightarrow{A} = 3(cos30\widehat{i} + sin30\widehat{j})\)
(ii) \(\overrightarrow{A} = 3(cos30\widehat{i} - sin30\widehat{j})\)
(iii) \(\overrightarrow{A} = 3( - cos30\widehat{i} - sin30\widehat{j})\)
(iv) \(\overrightarrow{A} = 3( - cos30\widehat{i} + sin30\widehat{j})\)

Illustration :

Angle made by the vector with positive direction of \(X\)-axis
Find angle ( \(\alpha\) ) made by the vectors with the positive direction of \(X\)-axis.
\[\overrightarrow{a} = \widehat{i} + \sqrt{3j} \]

\(tan\alpha = \left| \frac{a_{y}}{a_{x}} \right| = \left| \frac{\sqrt{3}}{1} \right|,\ \therefore\alpha = 60^{\circ}\) Ans. \(\alpha = 60^{\circ}\)
\[\overrightarrow{a} = - \widehat{i} + \sqrt{3}\widehat{j} \]

\(tan\theta = \left| \frac{a_{y}}{a_{x}} \right| = \left| \frac{\sqrt{3}}{I} \right|,\therefore\theta = 60^{\circ},\alpha = 180^{\circ} - \theta\) Ans. \(\alpha = 120^{\circ}\overrightarrow{a} = - \widehat{i} - \sqrt{3}\widehat{j}\)

\(tan\theta = \left| \frac{a_{y}}{a_{x}} \right| = \left| \frac{\sqrt{3}}{1} \right|,\therefore\theta = 60^{\circ},\alpha = 180^{\circ} + \theta\ \) Ans. \(\alpha = 240^{\circ}\overrightarrow{a} = \widehat{i} - \sqrt{3}\widehat{j}\)

\(tan\theta = \left| \frac{a_{y}}{a_{x}} \right| = \left| \frac{\sqrt{3}}{1} \right|,\therefore\theta = 60^{\circ},\alpha = 360^{\circ} - \theta\) or \(\alpha = - \theta\)

Illustration :

A man moves in the following manner in X-Y plane. Find the magnitude of displacement of man from origin as shown in figure.

Sol. \(\ {\overrightarrow{r}}_{l} = 4\widehat{i}\)

\[\begin{matrix} & {\overrightarrow{r}}_{2} = 5cos37^{\circ}\widehat{i} + 5sin37^{\circ}\widehat{j} \\ & {\overrightarrow{r}}_{2} = 4\widehat{i} + 3\widehat{j} \end{matrix}\]

Resultant vector

\[\begin{matrix} & \overrightarrow{r} = {\overrightarrow{r}}_{I} + {\overrightarrow{r}}_{2} \\ & \ = 8\widehat{i} + 3\widehat{j} \end{matrix}\]

Illustration :

A force of \(4N\) is acting at an angle of \(30^{\circ}\) to the horizontal. Find its component along axeses.

Sol \(\ F_{y} = 4sin30^{\circ} = 2N\)
\[F_{x} = 4cos30^{\circ} = 2\sqrt{3}\text{ }N \]

Illustration :

Find a vector \(\overrightarrow{F}\) of magnitude 50 N parallel to \(- 4\widehat{i} + 3\widehat{j}\).
Sol. \(\overrightarrow{F} = 50 \times \frac{( - 4\widehat{i} + 3\widehat{j})}{5} = - 40\widehat{i} + 30\widehat{j}\)

Illustration :

A particle is moving with speed \(6\text{ }m/s\) along the direction of \(2\widehat{i} + 2\widehat{j} - \widehat{k}\) find the velocity vector of a particle?
Sol. \(\ \overrightarrow{v} = |\overrightarrow{v}|\widehat{v} = 6\frac{(2\widehat{i} + 2\widehat{j} - \widehat{k})}{3} = 2(2\widehat{i} + 2\widehat{j} - \widehat{k})\)

Illustration :

Find a vector of magnitude twice of \(12\widehat{i} - 5\widehat{j}\) and anti-parallel to \(3\widehat{i} - 4\widehat{j}\)
Sol. Suppose \(\overrightarrow{a} = 12\widehat{i} - 5\widehat{j},\overrightarrow{b} = 3\widehat{i} - 4\widehat{j}\) required vector \(\overrightarrow{r}\).
\[{\overrightarrow{r} = 2|\overrightarrow{a}|( - \widehat{b}) }{= 2 \times (13)\left( \frac{- 3\widehat{i} + 4\widehat{j}}{5} \right) }{= \frac{26}{5}( - 3\widehat{i} + 4\widehat{j})}\]

Illustration :

An insect crawls 10 m towards east, turns to its right, crawls 8 m , and again turns to its right, Now crawling a distance of \(2m\) it turns to its right and stop after moving \(2m\) more. Find its net displacement.
Sol. Net displacement is \(\overrightarrow{OD}\)
\[{\overrightarrow{OD} = \overrightarrow{OM} + \overrightarrow{MD} }{OD = \sqrt{(OM)^{2} + (MD)^{2}}}\]

\[\begin{matrix} & \ = \sqrt{(OA - BC)^{2} + (AB - CD)^{2}} \\ & \ = \sqrt{8^{2} + 6^{2}} \end{matrix}\]

\[OD = 10\text{ }m \]In \(\bigtriangleup OMD\)

\[tan\theta = \frac{MD}{OM} = \frac{6}{8} = \frac{3}{4}\]

Displacement is 10 m at \(\theta = \tan^{- 1}\left( \frac{3}{4} \right) \approx 37^{\circ}S\) of \(E\)

Alternate

\[{{\overrightarrow{r}}_{i} = o\widehat{i} + o\widehat{j},{\overrightarrow{r}}_{f} = 8\widehat{i} - 6\widehat{j} }{\overrightarrow{d} = {\overrightarrow{r}}_{f} - {\overrightarrow{r}}_{i} = (8\widehat{i} - 6\widehat{j}) - (0\widehat{i} + 0\widehat{j}) }{\overrightarrow{d} = 8\widehat{i} - 6\widehat{j}}\]

Concept of Equilibrium :

Equilibrium means net force acting on body is zero.
i.e. \(\ \Sigma\overrightarrow{F} = \overrightarrow{0}\) (for translational equilibrium)
State of rest or moving with constant velocity are the condition of translational equilibrium.

Illustration :

Three forces \(\left( {\overrightarrow{F}}_{1},{\overrightarrow{F}}_{2},{\overrightarrow{F}}_{3} \right)\) are acting on a particle moving vertically up with constant speed. Two forces \({\overrightarrow{F}}_{I} = - 10\widehat{j}N\), and \({\overrightarrow{F}}_{2} = - 6\widehat{i} + 8\widehat{j}N\) are acting on particle respectively find \({\overrightarrow{F}}_{3}\).
Sol. \(\ \Sigma_{\overrightarrow{F}} = \overrightarrow{0}\) i.e
\[{\overrightarrow{F}}_{I} + {\overrightarrow{F}}_{2} + {\overrightarrow{F}}_{3} = \overrightarrow{0} \]

To find \(\overrightarrow{OE}\), You can move in the path \(OA \rightarrow AB \rightarrow BE\)
Find the vector \(\overrightarrow{OA},\overrightarrow{OB},\overrightarrow{OC},\overrightarrow{OD},\overrightarrow{OE},\overrightarrow{OF},\overrightarrow{OG}\)
\(\therefore\overrightarrow{OE} = a\widehat{i} + b\widehat{j} + c\widehat{k}\) similarly, \(\overrightarrow{OA} = a\widehat{i}\ \overrightarrow{OB} = a\widehat{i} + b\widehat{j}\)

\[\begin{matrix} \overrightarrow{OC} = b\widehat{j} & \overrightarrow{OD} = b\widehat{j} + c\widehat{k} \\ \overrightarrow{OG} = c\widehat{k} & \overrightarrow{OF} = a\widehat{i} + c\widehat{k} \end{matrix}\]

All these vectors are called position vectors as it defines the position of a particle in space with respect to origin.

Illustration :

Can you tell the co-ordinates of \(A,B,C,D,E,F\& G\).
Sol.
(A) \((a,0,0)\)
\[{B(a,b,0) }{C(0,b,0) }\](D) \((0,b,c)\)
\[{E(a,b,c) }{F(a,,0,c)\ G(0,0,c)}\]

Illustration :

What is the magnitude of the diagonal \(\overrightarrow{OE}\) ?
Sol. \(\overrightarrow{OE} = a\widehat{i} + b\widehat{j} + c\widehat{k}\)
\[|\overrightarrow{OE}| = \sqrt{a^{2} + b^{2} + c^{2}}\]

Illustration :

What is the magnitude of the \(\overrightarrow{GB}\) ?
Sol. \(\overrightarrow{GB} = \overrightarrow{OB} - \overrightarrow{OG}\)
\[= a\widehat{i} + b\widehat{j} - c\widehat{k} \]Thus, from now on we shall understand that \(|\overrightarrow{GB}| = \sqrt{a^{2} + b^{2} + c^{2}}\)

Displacement Vector:

Suppose that a particle displaces from position \({\overrightarrow{\mathbf{r}}}_{1}\) to \({\overrightarrow{\mathbf{r}}}_{2}\), then the particle's displacement is given by:

28
\[{{\overrightarrow{F}}_{3} = - \left( {\overrightarrow{F}}_{I} + {\overrightarrow{F}}_{2} \right) }{= - ( - 6\widehat{i} - 2\widehat{j}) }{{\overrightarrow{F}}_{3} = 6\widehat{i} + 2\widehat{j}N}\]

Subtraction of vectors (applications):

To find change in velocity.

Illustration :

A car is moving northwards at a constant speed of \(5\text{ }m/s\). it makes a right turn and continues to move with a constant speed of \(5\text{ }m/s\). Find the magnitude of change in velocity.

Sol.

\[\begin{matrix} & \Delta\overrightarrow{v} = {\overrightarrow{v}}_{f} - {\overrightarrow{v}}_{f} \\ & \Delta\overrightarrow{v} = 5\widehat{i} - 5\widehat{j} \\ & \ |\Delta\overrightarrow{v}| = \sqrt{5^{2} + 5^{2}} \\ & \ |\Delta\overrightarrow{v}| = 5\sqrt{2}\text{ }m/s \end{matrix}\]

Position Vector:

A general way of locating a particle is with a position vector \(\overrightarrow{\mathbf{r}}\), which is a vector that extends from a reference point to the particle. This reference point is usually the origin.

In unit vector notation: \(\overrightarrow{r} = x\widehat{i} + y\widehat{j} + z\widehat{k}\)

\(\overrightarrow{s} = p.v\). of \({\overrightarrow{r}}_{2} - p.v\). of \({\overrightarrow{r}}_{1} = \left( x_{2}\widehat{i} + y_{2}\widehat{j} + z_{2}\widehat{k} \right) - \left( x_{1}\widehat{i} + y_{1}\widehat{j} + z_{1}\widehat{k} \right)\)
\[\therefore\overrightarrow{s} = (\Delta x\widehat{i} + \Delta y\widehat{j} + \Delta z\widehat{k})\]

Illustration :

Find the displacement of tip of hour hand of the clock between 1 pm to 5 pm where the length of hour hand is 6 cm .
Sol. \(2 \times 6sin60^{\circ}\)
\[= 2 \times \left( 6 \times \frac{\sqrt{3}}{2} \right) = 6\sqrt{3}\text{ }cm \]

Illustration :

The position vectors of two balls are given by \({\overrightarrow{r}}_{1} = 2\widehat{i} + 7\widehat{j},{\overrightarrow{r}}_{2} = - 2\widehat{i} + 4\widehat{j}\) What will be the distance between the two balls?

Sol. \(\ \overrightarrow{r} = {\overrightarrow{r}}_{2} - {\overrightarrow{r}}_{I}\)
\[\overrightarrow{r} = - 4\widehat{i} - 3\widehat{j} \]Distance \(= \sqrt{4^{2} + 3^{2}} = 5\)
Now, so far we have learnt about different kinds of vectors. They were velocity vector, displacement vector, position vector etc. Similarly, we can have acceleration vector as well. One would have studied earlier about basic laws of kinematics.
\[{v = u + at }{S = ut + \frac{1}{2}at^{2} }\]In the above equation, other than time, rests physical quantities are vectors. So, a better representation would be:
\[{\overrightarrow{v} = \overrightarrow{u} + \overrightarrow{a}t }{\overrightarrow{S} = \overrightarrow{u}t + \frac{1}{2}\overrightarrow{a}t^{2} }\]And we should remember that the above equations are valid when the acceleration is constant. If
the acceleration is zero, then equation will be:
\(\overrightarrow{S} = \overrightarrow{u}t\) or \({\overrightarrow{r}}_{2} - {\overrightarrow{r}}_{I} = \overrightarrow{u}t\)

Illustration :

A particle has initial velocity of \(2\widehat{i}\) and has constant acceleration of \(3\widehat{j}\). Find its displacement and velocity after \(3s\). If initially, the particle is located at \(3\widehat{i} + 4\widehat{j}\), find its final location.

Sol. \(\overrightarrow{v} = \overrightarrow{u} + \overrightarrow{a}t = 2\widehat{i} + (3\widehat{j})3 = (2\widehat{i} + 9\widehat{j})\)
\[{{\overrightarrow{s}}_{2} - {\overrightarrow{s}}_{l} = \overrightarrow{u}t + \frac{1}{2}\overrightarrow{a}t^{2} = (2\widehat{i})(3) + \frac{1}{2}(3\widehat{j})(9) }{{\overrightarrow{s}}_{2} = 6\widehat{i} + \frac{27}{2}\widehat{j} + 3\widehat{i} + 4\widehat{j} }{= \left( 9\widehat{i} + \frac{35}{2}\widehat{j} \right)}\]

Illustration :

A particle who has a constant speed of \(50\text{ }m/s\). it moves along a straight line from \(A(2,1)\) to \(B(9,25)\). Find its velocity vector. If at initial instant of time it is located at (2, 0); find its final location after \(3s\).

Sol. \(\overrightarrow{AB} = \overrightarrow{B} - \overrightarrow{A} = 7\widehat{i} + 24\widehat{j}\)
\[\overrightarrow{v} = (\widehat{AB})|\overrightarrow{v}| = \frac{(7\widehat{i} + 24\widehat{j})}{25} \times 50 = 14\widehat{i} + 48\widehat{j} \]\({\overrightarrow{s}}_{2} - {\overrightarrow{s}}_{I} = \overrightarrow{v}(3)\), and \({\overrightarrow{s}}_{I} = 2\widehat{i}\)
\[{\overrightarrow{s}}_{2} = (42\widehat{i} + 144\widehat{j}) + 2\widehat{i} = (44\widehat{i} + 144\widehat{j})\]

Product of Vectors

There are two ways in which vectors can be multiplied :
(1) Scalar product or dot product.
(2) Vector product or cross product
(1) Scalar product
\(\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}|.|\overrightarrow{b}|cos\theta\), where \(\theta\) is angle between \(\overrightarrow{a}\) and \(\overrightarrow{b}\) It is called a scalar product because its product is a scalar quantity.

(i) \(\widehat{i} \cdot \widehat{i} = |\widehat{i}| \cdot |\widehat{i}|cos0^{\circ} = 1 = \widehat{j} \cdot \widehat{j} = \widehat{k} \cdot \widehat{k}\)
\[\widehat{i} \cdot \widehat{j} = |\widehat{i}| \cdot |\widehat{j}|cos90^{\circ} = 0 = \widehat{j} \cdot \widehat{k} = \widehat{k} \cdot \widehat{i} \](ii) \(\overrightarrow{a} \cdot \overrightarrow{b} = 0 \Rightarrow \overrightarrow{a}\bot\overrightarrow{b}\) : used to test orthogonality. (means two vectors are mutually perpendicular to each other).
(iii) If \(\overrightarrow{a} = a_{x}\widehat{i} + a_{y}\widehat{j} + a_{z}\widehat{k}\ \overrightarrow{b} = b_{x}\widehat{i} + b_{y}\widehat{j} + b_{z}\widehat{k}\)

\[\begin{matrix} & \overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}\|\overrightarrow{b}|cos\theta \\ & a_{x}b_{x} + a_{y}b_{y} + a_{z}b_{z} = \sqrt{a_{x}^{2} + a_{y}^{2} + a_{z}^{2}}\sqrt{b_{x}^{2} + b_{y}^{2} + b_{z}^{2}}cos\theta \end{matrix}\]

\(cos\theta = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}\|\overrightarrow{b}|}\) (this is used to find the angle between two vectors).
(iv) Work done by vector \(\overrightarrow{F}\) is defined as \(w = \overrightarrow{F} \cdot \overrightarrow{d}\)

Where \(\overrightarrow{d}\) displacement vector.

Illustration :

Find the dot product of vectors \(\overrightarrow{a} = 2\widehat{i} - 3\widehat{j} + \widehat{k},\overrightarrow{b} = - \widehat{i} + 3\widehat{j} + \widehat{k}\)
Sol. \(\overrightarrow{a} \cdot \overrightarrow{b} = - 2 - 9 + 1 = - 10\)

Illustration :

If \(\widehat{i} + 2\widehat{j} + n\widehat{k}\) is perpendicular to \(4\widehat{i} + 2\widehat{j} + 2\widehat{k}\) then find the value of \(n\) ?
Sol. \(\ (1\widehat{i} + 2\widehat{j} + n\widehat{k}) \cdot (4\widehat{i} + 2\widehat{j} + 2\widehat{k}) = 0\)
\[4 + 4 + n(2) = 0 \Rightarrow n = - 4\]

Illustration :

A force of \(( - 3\widehat{i} - \widehat{j} + 2\widehat{k})N\) displaced the body from a point \((4, - 3, - 5)m\) to a point \(( - 1,4,3)m\) in a straight line. Find the work done by the force.
Sol. \(\ \overrightarrow{A} = (4\widehat{i} - 3\widehat{j} - 5\widehat{k}),\overrightarrow{B} = - \widehat{i} + 4\widehat{j} + 3\widehat{k}\)
\[\overrightarrow{AB} = \overrightarrow{B} - \overrightarrow{A} = ( - 5\widehat{i} + 7\widehat{j} + 8\widehat{k}) \]\(W = \overrightarrow{F} \cdot \overrightarrow{AB} = ( - 3\widehat{i} - \widehat{j} + 2\widehat{k}) \cdot ( - 5\widehat{i} + 7\widehat{j} + 8\widehat{k}) = 24\) joule.

Projection (Component) of Vector : \(\overrightarrow{a}\) on \(\overrightarrow{b}\)

Find the vector component of (i) \(\overrightarrow{a}\) along \(\overrightarrow{b}\) (ii) \(\overrightarrow{a}\bot\) to \(\overrightarrow{b}\)

(i) Magnitude of Projection of \(\overrightarrow{a}\) on \(\overrightarrow{b} = |\overrightarrow{a}|cos\theta = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{b}|} = \overrightarrow{a} \cdot \widehat{b}\)

Thus, vector Component of vector \(\overrightarrow{a}\) in the direction of \(\overrightarrow{b}\) is \((\overrightarrow{a}.\widehat{b})\widehat{b}\)
(ii) Vector component of vector \(\overrightarrow{a}\) in the perpendicular direction of \(\overrightarrow{b}\) is \((\overrightarrow{a} - (\overrightarrow{a},\widehat{b})\widehat{b})\).

Illustration :

For vector \(\overrightarrow{a} = 3\widehat{i} + 3\widehat{j} - 2\widehat{k}\), what are its component along \(X\)-axis, \(Y\)-axis & \(Z\)-axis.
Sol. 3 along \(X\)-axis, 3 along \(Y\)-axis, - 2 along \(Z\)-axis.

Illustration :

Just after firing, a bullet is found to move at an angle of \(37^{\circ}\) to the horizontal. Its acceleration is \(10\text{ }m/s^{2}\) downwards. Find the component of its acceleration in the direction of its velocity. Ans: \(6\text{ }m/s^{2}\)

Ans. \(\ \widehat{v} = \frac{1}{5}(4\widehat{i} + 3\widehat{j})\)

\[\overrightarrow{a} = - g\widehat{j} \]vector Component of vector \(\overrightarrow{a}\) in the direction of \(\overrightarrow{v}\) is \((\overrightarrow{a}.\widehat{v})\widehat{v}\). Thus \(- 6\text{ }m/s^{2}\).

(2) Cross product or vector product of two vectors :

The vector or cross product of two vectors \(\overrightarrow{a}\) and \(\overrightarrow{b}\) is defined as

\[\overrightarrow{a} \times \overrightarrow{b} = absin\theta\widehat{n}\]

The product is defined to be a vector of magnitude ab \(sin\theta\) that points in the direction of the unit vector \(\widehat{n}\) normal (perpendicular) to the plane of \(\overrightarrow{a}\) and \(\overrightarrow{b}\). The angle \(\theta\) is the smaller angle between the vector.

The direction of \(\widehat{n}\) is still ambiguous. This ambiguity is removed by using a convention called the righthand rule. Curl the fingers of your right hand and stick out your thumb as if you were hitch-hiking as in figure. The sense of rotation of the fingers should be from the first vector \(\overrightarrow{a}\) to the second vector \(\overrightarrow{b}\) through the smaller angle between them. The thumb indicates the direction \(\widehat{n}\).

Because of the right-hand rule, the order of the vectors in the cross product is important. The vector product is noncommutative :

\[\overrightarrow{b} \times \overrightarrow{a} = - \overrightarrow{a} \times \overrightarrow{b}\]

Properties of vector (or Cross Product)

(i) Cross product non-commutative :

\[\overrightarrow{a} \times \overrightarrow{b} \neq \overrightarrow{b} \times \overrightarrow{a}\text{~}\text{i.e.}\text{~}\overrightarrow{b} \times \overrightarrow{a} = - \overrightarrow{a} \times \overrightarrow{b}\]

(ii) Follows distributive law:

\[\overrightarrow{a} \times (\overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{c}\]

(iii) If \(a\) and \(b\) are any vectors, and \(m\) is any real number (positive or negative) then \((m\overrightarrow{a}) \times \overrightarrow{b} = m(\overrightarrow{a} \times \overrightarrow{b}) = \overrightarrow{a} \times (m\overrightarrow{b})\)
(iv) Does not follow associative law :

\[\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) \neq (\overrightarrow{a} \times \overrightarrow{b}) \times \overrightarrow{c}\]

(v) \(\widehat{i} \times \widehat{j} = \widehat{k},\widehat{j} \times \widehat{k} = \widehat{i},\widehat{k} \times \widehat{i} = \widehat{j}\)
and \(\widehat{i} \times \widehat{i} = 0,\widehat{j} \times \widehat{j} = 0,\widehat{k} \times \widehat{k} = 0\)
(vi) \(\overrightarrow{a} = a_{x}\widehat{i} + a_{y}\widehat{j} + a_{z}\widehat{k}\)

\[\begin{matrix} & \overrightarrow{b} = b_{x}\widehat{i} + b_{y}\widehat{j} + b_{z}\widehat{k} \\ & \overrightarrow{a} \times \overrightarrow{b} = \left( a_{x}\widehat{i} + a_{y}\widehat{j} + a_{z}\widehat{k} \right) \times \left( b_{x}\widehat{i} + b_{y}\widehat{j} + b_{z}\widehat{k} \right) \\ & \ = \left( a_{y}b_{z} - a_{z}b_{y} \right)\widehat{i} + \left( a_{z}b_{x} - a_{x}b_{z} \right)\widehat{j} + \left( a_{x}b_{y} - a_{y}b_{x} \right)\widehat{k} \end{matrix}\]

(vii) Angle between two vectors

\[\begin{matrix} & \ |\overrightarrow{a} \times \overrightarrow{b}| = |\overrightarrow{a}||\overrightarrow{b}|sin\theta \\ & sin\theta = |\overrightarrow{a} \times \overrightarrow{b}|/|\overrightarrow{a}||\overrightarrow{b}| \end{matrix}\]

Let
\(\overrightarrow{a} = a_{1}\widehat{i} + a_{2}\widehat{j} + a_{3}\widehat{k}\) and \(\overrightarrow{b} = b_{1}\widehat{i} + b_{2}\widehat{j} + b_{3}\widehat{k}\)
\[{\overrightarrow{a} \times \overrightarrow{b} = \left( a_{2}{\text{ }b}_{3} - a_{3}{\text{ }b}_{2} \right)\widehat{i} - \left( a_{1}{\text{ }b}_{3} - a_{3}{\text{ }b}_{1} \right)\widehat{j} + \left( a_{1}{\text{ }b}_{2} - a_{2}{\text{ }b}_{1} \right)\widehat{k} }{\Rightarrow |\overrightarrow{a} \times \overrightarrow{b}| = \sqrt{\left( a_{2}b_{3} - a_{3}b_{2} \right)^{2} + \left( a_{1}b_{3} - a_{3}b_{1} \right)^{2} + \left( a_{1}b_{2} - a_{2}b_{1} \right)^{2}} }{|\overrightarrow{a}| = \sqrt{a_{1}^{2} + a_{2}^{2} + a_{3}^{2}},|\overrightarrow{\text{ }b}| = \sqrt{b_{1}^{2} + b_{2}^{2} + b_{3}^{2}} }{sin\theta = \frac{\sqrt{\left( a_{2}b_{3} - a_{3}b_{2} \right)^{2} + \left( a_{3}b_{1} - a_{1}b_{3} \right)^{2} + \left( a_{1}b_{2} - a_{2}b_{1} \right)^{2}}}{\sqrt{a_{1}^{2} + a_{2}^{2} + a_{3}^{2}}\sqrt{b_{1}^{2} + b_{2}^{2} + b_{3}^{2}}} }\](ix) The cross product of a vector with itself is a NULL vector i.e.,

\[\overrightarrow{a} \times \overrightarrow{a} = |\overrightarrow{a}||\overrightarrow{a}|sin0^{\circ}\widehat{n} = \overrightarrow{0}\]

(x) The cross product of two vectors represents the area of the parallelogram formed by them, (Figure., shows a parallelogram \(PQRS\) whose adjacent sides \(\overrightarrow{PQ}\) and \(\overrightarrow{PS}\) are represented by vectors \(\overrightarrow{a}\) and \(\overrightarrow{b}\) respectively.

Now, area of parallelogram \(= |\overrightarrow{PQ}| \cdot |\overrightarrow{SM}| = |\overrightarrow{PQ}| \cdot |\overrightarrow{PS}|sin\theta = |\overrightarrow{a}| \cdot |\overrightarrow{b}|sin\theta = |\overrightarrow{a} \times \overrightarrow{b}|\) hence cross product of two vectors represents the area of parallelogram formed by it. It is worth noting that area vector \(\overrightarrow{a} \times \overrightarrow{b}\) acts along the perpendicular to the plane of two vectors \(\overrightarrow{a}\) and \(\overrightarrow{b}\).

Unit Vector Perpendicular to two given vectors

Let be a unit vector perpendicular to two (non-zero) vectors \(a,b\) and positive for right handed rotation from a to b and \(\theta\) be the angle between the vectors \(a,b\) then

\[\begin{matrix} & \overrightarrow{a} \times \overrightarrow{b} = |\overrightarrow{a}||\overrightarrow{b}|sin\theta\widehat{n} \\ & \ |\overrightarrow{a} \times \overrightarrow{b}| = |\overrightarrow{a}||\overrightarrow{b}|sin\theta \end{matrix}\]

Thus we get \(= \overrightarrow{a} \times \overrightarrow{b}/|\overrightarrow{a} \times \overrightarrow{b}| = \widehat{n}\).

Illustration :

Prove that
\[\overrightarrow{a} \times (\overrightarrow{b} + \overrightarrow{c}) + \overrightarrow{b} \times (\overrightarrow{c} + \overrightarrow{a}) + \overrightarrow{c} \times (\overrightarrow{a} + \overrightarrow{b}) = 0 \]Sol. \(\ \overrightarrow{a} \times (\overrightarrow{b} + \overrightarrow{c}) + \overrightarrow{b} \times (\overrightarrow{c} + \overrightarrow{a}) + \overrightarrow{c} \times (\overrightarrow{a} + \overrightarrow{b})\)
\[{= \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{c} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{b} \times \overrightarrow{a} + \overrightarrow{c} \times \overrightarrow{a} + \overrightarrow{c} \times \overrightarrow{b} }{= \overrightarrow{a} \times \overrightarrow{b} - \overrightarrow{c} \times \overrightarrow{a} + \overrightarrow{b} \times \overrightarrow{c} - \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{c} \times \overrightarrow{a} - \overrightarrow{b} \times \overrightarrow{c} = 0}\]

Illustration :

Find \(\overrightarrow{a} \times \overrightarrow{b}\) and \(\overrightarrow{b} \times \overrightarrow{a}\) if
(i) \(\overrightarrow{a} = 3\widehat{k} + 4\widehat{j},\overrightarrow{b} = \widehat{i} + \widehat{j} - \widehat{k}\)
(ii) \(\overrightarrow{a} = (2, - 1,1);\overrightarrow{b} = (3,4, - 1)\)

Sol. (i) \(\overrightarrow{a} \times \overrightarrow{b} = \left| \begin{matrix} \widehat{i} & \widehat{j} & \widehat{k} \\ 0 & 4 & 3 \\ 1 & 1 & - 1 \end{matrix} \right| = - 7\widehat{i} + 3\widehat{j} - 4\widehat{k}\)

\[\overrightarrow{b} \times \overrightarrow{a} = \left| \begin{matrix} \widehat{i} & \widehat{j} & \widehat{k} \\ 1 & 1 & - 1 \\ 0 & 4 & 3 \end{matrix} \right| = 7\widehat{i} - 3\widehat{j} + 4\widehat{k}\]

Thus \(\overrightarrow{a} \times \overrightarrow{b} \neq \overrightarrow{b} \times \overrightarrow{a}\)
(ii) \(\overrightarrow{a} \times \overrightarrow{b} = \left| \begin{matrix} \widehat{i} & \widehat{j} & \widehat{k} \\ 2 & - 1 & 1 \\ 3 & 4 & - 1 \end{matrix} \right| = - 3\widehat{i} + 5\widehat{j} + 11\widehat{k}\)

\[\overrightarrow{b} \times \overrightarrow{a} = \left| \begin{matrix} \widehat{i} & \widehat{j} & \widehat{k} \\ 3 & 4 & - 1 \\ 2 & - 1 & 1 \end{matrix} \right| = 3\widehat{i} - 5\widehat{j} - 11\widehat{k}\]

Illustration :

If \(\overrightarrow{a} = 3\widehat{i} + \widehat{j} + 2\widehat{k}\) and \(\overrightarrow{b} = 2\widehat{i} - 2\widehat{j} + 4\widehat{k}\)
(i) find the magnitude of \(\overrightarrow{a} \times \overrightarrow{b}\)
(ii) find \(a\) unit vector perpendicular to both \(a\) and \(b\).
(iii) find the cosine and sine of the angle between the vectors \(a\) and \(b\)

Sol. (i) \(\ \overrightarrow{a} \times \overrightarrow{b} = \left| \begin{matrix} \widehat{i} & \widehat{j} & \widehat{k} \\ 3 & 1 & 2 \\ 2 & - 2 & 4 \end{matrix} \right| = 8\widehat{i} - 8\widehat{j} - 8\widehat{k}\)
\(\therefore\ \) Magnitude of \(\overrightarrow{a} \times \overrightarrow{b} = |\overrightarrow{a} \times \overrightarrow{b}|\)

\[\sqrt{(8)^{2} + ( - 8)^{2} + ( - 8)^{2}} = 8\sqrt{3}\]

(ii) \(\widehat{n} = \frac{\overrightarrow{a} \times \overrightarrow{b}}{|\overrightarrow{a} \times \overrightarrow{b}|} = \frac{8\widehat{i} - 8\widehat{j} - 8\widehat{k}}{8\sqrt{3}} = \frac{1}{\sqrt{3}}(\widehat{i} - \widehat{j} - \widehat{k})\)

There are two unit vectors perpendicular to both \(\overrightarrow{a}\) and \(\overrightarrow{b}\) they are

\[\pm \widehat{n} = \pm \frac{1}{\sqrt{3}}(\widehat{i} - \widehat{j} - \widehat{k})\]

(iii) To find \(cos\theta\)

\[\begin{matrix} \overrightarrow{a} \cdot \overrightarrow{b} = & \ |\overrightarrow{a}||\overrightarrow{b}|cos\theta = (3\widehat{i} + \widehat{j} + 2\widehat{k}) \cdot (2\widehat{i} - 2\widehat{j} + 4\widehat{k}) \\ & \ = (3)(2) + (1)( - 2) + 2(4) = 12 \\ |\overrightarrow{a}| = & \sqrt{3^{2} + 1^{2} + 2^{2}} = \sqrt{14} \\ |\overrightarrow{b}| = & \sqrt{(2)^{2} + ( - 2)^{2} + (4)^{2}} = \sqrt{24} \end{matrix}\]

\[cos\theta = \overrightarrow{a} \cdot \overrightarrow{b} \land \overrightarrow{a}||\overrightarrow{b}\left| \ = \frac{12}{\sqrt{14}\sqrt{24}} = \frac{12}{\sqrt{2}\sqrt{7} \cdot 2\sqrt{2}\sqrt{3}} = \sqrt{\frac{3}{7}} \right.\ \]Also, \(sin\theta = |\overrightarrow{a} \times \overrightarrow{b}|/|\overrightarrow{a}||\overrightarrow{b}| = \frac{8\sqrt{3}}{\sqrt{14}\sqrt{24}} = \frac{2}{\sqrt{7}}\)
Also, \(sin\theta = \sqrt{1 - \cos^{2}\theta} = \sqrt{1 - \frac{3}{7}} = \sqrt{\frac{4}{7}} = \frac{2}{\sqrt{7}}\)

Illustration :

The vectors from origin to the points \(A\) and \(B\) are \(\overrightarrow{a} = 3\widehat{i} - 6\widehat{j} + 2\widehat{k}\) and \(\overrightarrow{b} = 2\widehat{i} + \widehat{j} - 2\widehat{k}\) respectively. Find the area of :
(i) the triangle \(OAB\)
(ii) the parallelogram formed by \(\overrightarrow{OA}\) and \(\overrightarrow{OB}\) as adjacent sides.

Sol. Given \(\overrightarrow{OA} = \overrightarrow{a} = 3\widehat{i} - 6\widehat{j} + 2\widehat{k}\) and \(\overrightarrow{OB} = \overrightarrow{b} = 2\widehat{i} + \widehat{j} - 2\widehat{k}\)
\[{\therefore\ (\overrightarrow{a} \times \overrightarrow{b}) = \left| \begin{matrix} \widehat{i} & \widehat{j} & \widehat{k} \\ 3 & - 6 & 2 \\ 2 & 1 & - 2 \end{matrix} \right| }{= (12 - 2)\widehat{i} - ( - 6 - 4)\widehat{j} + (3 + 12)\widehat{k} }{= 10\widehat{i} + 10\widehat{j} + 15\widehat{k} }{\Rightarrow |\overrightarrow{a} \times \overrightarrow{b}| = \sqrt{10^{2} + 10^{2} + 15^{2}} = \sqrt{425} = 5\sqrt{17} }\](i) Area of \(OAB = \frac{1}{2}|\overrightarrow{a} \times \overrightarrow{b}| = \frac{1}{2} \cdot 5\sqrt{17}\) sq. units \(= \frac{5}{2}\sqrt{17}\) sq. units
(ii) Area of parallelogram formed by \(\overrightarrow{OA}\) and \(\overrightarrow{OB}\) as adjacent sides \(= |\overrightarrow{a} \times \overrightarrow{b}| = 5\sqrt{17}\) sq. units.

Solved Example

Q. 1 Given that \(\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C} = \overrightarrow{0}\), but of three two are equal in magnitude and the magnitude of third vector is \(\sqrt{2}\) times that of either of the vectors two having equal magnitude. Then the angles between vectors are given by -
(A) \(30^{\circ},60^{\circ},90^{\circ}\)
(B) \(45^{\circ},45^{\circ},90^{\circ}\)
(C) \(45^{\circ},60^{\circ},90^{\circ}\)
(D) \(90^{\circ},135^{\circ},135^{\circ}\)

Sol. (D) From polygon law, there vectors having summation zero, should from a closed polygon (triangle). Since the two vectors are having same magnitude and the third vector is \(\sqrt{2}\) times that of either of two having equal magnitude. i.e. the triangle should be right angled triangle.

Angle between A and B is \(90^{\circ}\)
Angle between B and C is \(135^{\circ}\)
Angle between A and C is \(135^{\circ}\)
Q. 2 If a particle moves 5 m in +x -direction. Show the displacement of the particle-
(A) \(5\widehat{j}\)
(B) \(5\widehat{i}\)
(C) \(- 5\widehat{j}\)
(D) \(5\widehat{k}\)

Sol. \(\ \) Magnitude of vector \(= 5\)

\[\begin{matrix} & \text{~}\text{Unit vector in}\text{~} + x\text{~}\text{direction is}\text{~}\widehat{i} \\ & \text{~}\text{displacement}\text{~} = 5\widehat{i} \end{matrix}\]

Hence correct answer is (B).
Q. 3 A car travels 6 km towards north at an angle of \(45^{\circ}\) to the east then travels distnace of 4 km towards north at an angle of \(135^{\circ}\) to the east. How far is its final position due east and due north? How far is the point from the strating point? What angle does the straight line joining its initial and final position makes with the east? What is the total distnace travelled by the car?

Sol. Net movement along X - direction

\[\begin{matrix} & \ = (6 - 4)cos45^{\circ}\widehat{i} \\ & \ = 2 \times \frac{1}{\sqrt{2}} = \sqrt{2}\text{ }km \end{matrix}\]

Net movement along Y -direction

\[\begin{matrix} & \ = (6 + 4)sin45^{\circ}\widehat{j} \\ & \ = 10 \times \frac{1}{\sqrt{2}} = 5\sqrt{2}\text{ }km \end{matrix}\]

Net movement form starting point (Total distance travelled)

\[= 6 + 4 = 10\text{ }km\]

Angle which makes with the east direction

\[\begin{matrix} & tan\theta = \frac{Y - \text{~}\text{component}\text{~}}{X - \text{~}\text{component}\text{~}} \\ & \ = \frac{5\sqrt{2}}{\sqrt{2}} \\ & \theta = \tan^{- 1}(5) \end{matrix}\]

Q. 4 Abody is moving with uniform speed v on a horizontal circle in anticlockwise direction from A as shown in figure. What is the change in velocity in (a) half revolution (b) first quarter revolution.

Sol. Change in velocity in half revolution

\[\begin{matrix} & \Delta\overrightarrow{v} = {\overrightarrow{v}}_{c} - {\overrightarrow{v}}_{A} \\ & \ = v( - \widehat{j}) - v(\widehat{j}) \end{matrix}\]

\[\Delta\overrightarrow{v} = - 2v\widehat{j}\]

\(|\Delta\overrightarrow{v}| = 2v\) directed towards negative y -axis
change in velocity in first quarter revolution

\[\begin{matrix} & \Delta\overrightarrow{v} = {\overrightarrow{v}}_{B} - {\overrightarrow{v}}_{A} \\ & \ = v( - \widehat{i}) - v(\widehat{j}) \\ & \ = - v(\widehat{i} + \widehat{j}) \end{matrix}\]

\(|\Delta\overrightarrow{v}| = \sqrt{2}v\) and directed towards south-west.
Q. 5 The sum of the magnitudes of two forces acting at a point is 18 and the magnitude of their Resultant is 12. if the resultant is at \(90^{\circ}\) with the force of smaller magnitude, what are the magnitudes of forces?
(A) 12,5
(B) 14,4
(C) 5,13
(D) 10,8

Sol. Let P be the smaller force then it is given that

\[\begin{array}{r} P + Q = 18\#(1) \end{array}\]

\[\begin{array}{r} R = \sqrt{P^{2} + Q^{2} + 2PQcos\theta} = 12\#(2) \end{array}\]

\[Qsin\theta/P + Qcos\theta = tan\phi = tan90^{\circ} = \infty\]

\[\begin{array}{r} P + Qcos\theta = 0\#(3) \end{array}\]

Substituting the value of P

\[\begin{array}{r} Q(1 - cos\theta) = 18\#(4) \end{array}\]

and subtracting square of equation (2) from (1)

\[\begin{array}{r} 2PQ\lbrack 1 - cos\theta\rbrack = 18^{2} - 12^{2} = 180\#(5) \end{array}\]

Dividing equation (5) by (4)
\(2P = 10\) i.e. \(P = 5\), so \(Q = 13\)
So the magnitude of forces are (5 and 13)
Hence correct answer is (C)
Q. 6 Let \(\overrightarrow{a} = 2\widehat{i} + 3\widehat{j} - \widehat{k};\overrightarrow{b} = - \widehat{i} + 3\widehat{j} + 4\widehat{k}\). Evaluate
(i) \(|\overrightarrow{a}|;|\overrightarrow{b}|\)
(ii) \(\overrightarrow{a} \cdot \overrightarrow{b}\)
(iii) the angle between the vectors \(\overrightarrow{a}\) and \(\overrightarrow{b}\)
(iv) the projection of \(\overrightarrow{a}\) on \(\overrightarrow{b}\)
(v) the projection of \(\overrightarrow{b}\) on \(\overrightarrow{a}\)
(vi) area of the \(\bigtriangleup AOB\) where O is origin

Sol. Give \(\overrightarrow{a} = 2\widehat{i} + 3\widehat{j} - \widehat{k},\overrightarrow{b} = - \widehat{i} + 3\widehat{j} + 4\widehat{k}\)
(i) \(|\overrightarrow{a}| = \sqrt{2^{2} + 3^{2} + ( - 1)^{2}} = \sqrt{4 + 9 + 1} = \sqrt{14}\)

\[|\overrightarrow{b}| = \sqrt{( - 1)^{2} + 3^{2} + 4^{2}} = \sqrt{1 + 9 + 16} = \sqrt{26}\]

(ii) \(\overrightarrow{a} \cdot \overrightarrow{b} = 2( - 1) + 3 \times 3 + ( - 1)(4) = 3\)
(iii) The angle \(\theta\) between the vectors \(\overrightarrow{a}\) and \(\overrightarrow{b}\) is given by

\[cos\theta = \frac{\overrightarrow{a} \cdot \overrightarrow{\text{ }b}}{|\overrightarrow{a}\|\overrightarrow{b}|} = \frac{3}{\sqrt{14}\sqrt{26}} = \frac{3}{2\sqrt{91}}\]

(iv) the projection of \(\overrightarrow{a}\) on \(\overrightarrow{b} = |\overrightarrow{a}|cos\theta\)

\[\sqrt{14} \times \frac{3}{\sqrt{14}\sqrt{26}} = \frac{3}{\sqrt{26}}\]

(v) The projection of \(\overrightarrow{b}\) on \(\overrightarrow{a} = |\overrightarrow{b}|cos\theta\)

\[\sqrt{26} \times \frac{3}{\sqrt{14}\sqrt{26}} = \frac{3}{\sqrt{14}}\]

(vi) Area of \(\bigtriangleup AOB = \frac{1}{2}|\overrightarrow{a}\|\overrightarrow{b}|sin\theta\)

Now \(\sin^{2}\theta = 1 - \cos^{2}\theta = 1 - \left( \frac{3}{2\sqrt{91}} \right)^{2}\)

\[= 1 - \frac{9}{364} = \frac{355}{364}\]

Area of \(\bigtriangleup AOB = \frac{1}{2}\sqrt{14}\sqrt{26} \cdot \sqrt{\frac{355}{364}}\)

\[= \frac{\sqrt{355}}{2} = 9.42\text{~}\text{sq. unit approx.}\text{~}\]

Q. 7 The torque of force \(\overrightarrow{F} = - 3\widehat{i} + \widehat{j} + 5\widehat{k}\) acting at the point \(\overrightarrow{r} = 7\widehat{i} + 3\widehat{j} + \widehat{k}\) is \(\_\_\_\_\) ?
(A) \(14\widehat{i} - 38\widehat{j} + 16\widehat{k}\)
(B) \(4\widehat{i} + 4\widehat{j} + 6\widehat{k}\)
(C) \(- 21\widehat{i} + 4\widehat{j} + 4\widehat{k}\)
(D) \(- 14\widehat{i} + 34\widehat{j} - 16\widehat{k}\)

Sol. (A) The torque is defined as \(\overrightarrow{\tau} = \overrightarrow{r} \times \overrightarrow{F}\)
\[{\overrightarrow{r} \times \overrightarrow{F} = \left| \begin{matrix} \widehat{i} & \widehat{j} & \widehat{k} \\ 7 & 3 & 1 \\ - 3 & 1 & 5 \end{matrix} \right| }{= \widehat{i}\left| \begin{matrix} 3 & 1 \\ 1 & 5 \end{matrix} \right| + \widehat{j}\left| \begin{matrix} 1 & 7 \\ 5 & - 3 \end{matrix} \right| + \widehat{k}\left| \begin{matrix} 7 & 3 \\ - 3 & 1 \end{matrix} \right| }{= \widehat{i}(15 - 1) + \widehat{j}( - 3 - 35) + \widehat{k}(7 - ( - 9)) }{= 14\widehat{i} - 38\widehat{j} + 16\widehat{k} }\]Thus the answer is (A)
Q. 8 The vectors from origin to the points \(A\) and \(B\) are \(\overrightarrow{a} = 3\widehat{i} - 6\widehat{j} + 2\widehat{k}\) and \(\overrightarrow{b} = 2\widehat{i} + \widehat{j} - 2\widehat{k}\) respectively. Find the area of:
(i) the triangle OAB
(ii) the parallelogram formed by OA and OB as adjacent sides.

Sol. Given \(\overrightarrow{OA} = \overrightarrow{a} = 3\widehat{i} - 6\widehat{j} + 2\widehat{k}\)
and \(\overrightarrow{OB} = \overrightarrow{b} = 2\widehat{i} + \widehat{j} - 2\widehat{k}\)
\[{\therefore\ (\overrightarrow{a} \times \overrightarrow{b}) = \left| \begin{matrix} \widehat{i} & \widehat{j} & \widehat{k} \\ 3 & - 6 & 2 \\ 2 & 1 & - 2 \end{matrix} \right| }{= (12 - 2)\widehat{i} - ( - 6 - 4)\widehat{j} - (3 + 12)\widehat{k} }{= 10\widehat{i} + 10\widehat{j} + 15\widehat{k} }{\Rightarrow |\overrightarrow{a} \times \overrightarrow{b}| = \sqrt{10^{2} + 10^{2} + 15^{2}} = \sqrt{425} = 5\sqrt{17} }\](i) Area of \(\bigtriangleup OAB = \frac{1}{2}|\overrightarrow{a} \times \overrightarrow{b}| = \frac{1}{2} \cdot 5\sqrt{17}\) sq. units
\(= \frac{5}{2}\sqrt{17}\) sq. units
(ii) Area of parallelogram fromed by OA and OB as
adjacent sides \(= |\overrightarrow{a} \times \overrightarrow{b}| = 5\sqrt{17}\) sq. units.
Q. 9 A buoy is attached to three tugboats by three ropes. The tugboats are engaged in a tug-of-war. One tugboat pulls west on the buoy with a force \({\overrightarrow{F}}_{1}\) of magnitude 1000 N . The second tugboat pulls south on the buoy with a force \({\overrightarrow{F}}_{2}\) of magnitude 2000 N . The third tugboat pulls northeast (that is, half way between north and east), with a force \({\overrightarrow{F}}_{3}\) of magnitude 2000 N .
(a) Draw a diagram of forces acting on the buoy to represent this situation.
(b) Express each force in unit vector form \((\widehat{i},\widehat{j})\).
(c) Calculate the magnitude of the resultant force.

Sol. (a)

(b)

\[\begin{matrix} & {\overrightarrow{F}}_{1} = - 1000\widehat{i}(\text{ }N), \\ & {\overrightarrow{F}}_{2} = - 2000\widehat{j}(\text{ }N), \\ & {\overrightarrow{F}}_{3} = 2000\left( cos45^{\circ}\widehat{i} + sin45^{\circ}\widehat{j} \right)(N) = 1000\sqrt{2}\widehat{i} + 1000\sqrt{2}\widehat{j} \end{matrix}\]

(c) \(\ {\overrightarrow{F}}_{\text{resultant}\text{~}} = {\overrightarrow{F}}_{1} + {\overrightarrow{F}}_{2} + {\overrightarrow{F}}_{3} = 1000(\sqrt{2} - 1)\widehat{i} - 1000(2 - \sqrt{2})\widehat{j}N\)

\[\begin{matrix} & F_{x} = 1000(\sqrt{2} - 1)N \\ & F_{y} = - 1000(2 - \sqrt{2})N \end{matrix}\]

\[|\overrightarrow{F}| = \sqrt{F_{x}^{2} + F_{y}^{2}} = 1000(\sqrt{2} - 1) \times \sqrt{}3 = 1000(\sqrt{2} - 1)\sqrt{3}\text{ }N\]