Physics / Mathematics for Physics
Trigonometry
Angle
The angle is defined as the amount of revolution that the revolving
line makes with its initial position. From \(\theta\) is positive if it is traced by
revolving line in anticlockwise direction and is negative if it is
covered in clockwise direction.
\[1^{\circ} =
60^{'}(minute),1^{'}(min) = 60^{''}(sec)
\]1 right angle \(= 90^{\circ}\)
(degrees) also 1 right angle \(=
\frac{\pi}{2}rad(radian)\)
One radian is the angle subtended at the centre of a circle, whose
length is equal to the radius of the circle.
\[{1rad = \frac{180^{\circ}}{\pi} \approx
57^{\circ}17^{'}45^{''} \approx {57.3}^{\circ}
}{\pi = \left( \frac{22}{7} \right)}\]
Trigonometric ratios (or T ratios)
Let two fixed lines \({XOX}^{'}\) and \({YOY}^{'}\) intersecting at right
angles to each other at point O . Then
(i) Point O is called origin.
(ii) \({XOX}^{'}\) known as X -axis
and \({YOY}^{'}\) are Y
-axis.
(iii) Portions XOY, YOX', Y'OX' and XOY' are called I, II, III and IV
quadrant respectively.
Consider that the revolving line OP has traced out angle \(\theta\).
(in I quadrant) in anticlockwise direction. From P , perpendicular PM on
OX. Then, side OP (in front of right angle) is called hypotenuse, side
MP (in front of angle \(\theta\) ) is
called opposite side or perpendicular and side OM (making angle \(\theta\) with hypotenuse) is called
adjacent side or base.

The three sides of a right angled triangle are connected to each
other through six different ratios, called trigonometric ratios or
simply T-ratios.
\[\begin{matrix}
sin\theta =
\frac{\text{~}\text{perpendicular}\text{~}}{\text{~}\text{hypotenuse}\text{~}}
= \frac{MP}{OP} & cos\theta =
\frac{\text{~}\text{base}\text{~}}{\text{~}\text{hypotenuse}\text{~}} =
\frac{OM}{OP} \\
tan\theta =
\frac{\text{~}\text{perpendicular}\text{~}}{\text{~}\text{base}\text{~}}
= \frac{MP}{OM} & cot\theta =
\frac{\text{~}\text{base}\text{~}}{\text{~}\text{perpendicular}\text{~}}
= \frac{OM}{MP} \\
sec\theta =
\frac{\text{~}\text{hypotenuse}\text{~}}{\text{~}\text{base}\text{~}} =
\frac{OP}{OM} & cosec\theta =
\frac{\text{~}\text{hypotenuse}\text{~}}{\text{~}\text{perpendicular}\text{~}}
= \frac{OP}{MP}
\end{matrix}\]
It can be easily proved that
\[\begin{matrix}
cosec\theta = \frac{1}{sin\theta} & sec\theta = \frac{1}{cos\theta}
& cot\theta = \frac{1}{tan\theta} \\
\sin^{2}\theta + \cos^{2}\theta = 1 & 1 + \tan^{2}\theta +
\sec^{2}\theta & 1 + \cot^{2}\theta = {cosec}^{2}\theta
\end{matrix}\]
Illustration :
Given \(sin\theta = \frac{3}{5}\).
Find all the other T-ratios, if \(\theta\) lies in the first quadrant.
Sol. In \(\bigtriangleup OMP,sin\theta =
\frac{3}{5}\ \) So \(\ MP = 3\)
and \(OP = 5\)
\[\because OM = \sqrt{(5)^{2} - (3)^{2}} =
\sqrt{25 - 9} = \sqrt{16} = 4
\]Now, \(cos\theta = \frac{OM}{OP} =
\frac{4}{5}\ tan\theta = \frac{MP}{OM} = \frac{3}{4}\ cot\theta =
\frac{OM}{MP} = \frac{4}{3}\)
\[sec\theta = \frac{OP}{OM} = \frac{5}{4}\
cosec\theta = \frac{OP}{MP} = \frac{5}{3}\]
The T-ratios of a few standard angles ranging from \(0^{\circ}\) to \(180^{\circ}\)
| Angle ( \(\theta\) ) |
\[0^{\circ}\] |
\[30^{\circ}\] |
\[45^{\circ}\] |
\[60^{\circ}\] |
\[90^{\circ}\] |
\[120^{\circ}\] |
\[135^{\circ}\] |
\[150^{\circ}\] |
\[180^{\circ}\] |
| \[sin\theta\] |
0 |
\[\frac{1}{2}\] |
\[\frac{1}{\sqrt{2}}\] |
\[\frac{\sqrt{3}}{2}\] |
1 |
\[\frac{\sqrt{3}}{2}\] |
\[\frac{1}{\sqrt{2}}\] |
\[\frac{1}{2}\] |
0 |
| \[cos\theta\] |
1 |
\[\frac{\sqrt{3}}{2}\] |
\[\frac{1}{\sqrt{2}}\] |
\[\frac{1}{2}\] |
0 |
\[- \frac{1}{2}\] |
\[- \frac{1}{\sqrt{2}}\] |
\[- \frac{\sqrt{3}}{2}\] |
-1 |
| \[tan\theta\] |
0 |
\[\frac{1}{\sqrt{3}}\] |
1 |
\[\sqrt{3}\] |
\[\infty\] |
\[- \sqrt{3}\] |
-1 |
\[- \frac{1}{\sqrt{3}}\] |
0 |
\[{sin\left( 90^{\circ} - \theta \right) =
cos\theta
}{cos\left( 90^{\circ} - \theta \right) = sin\theta
}{tan\left( 90^{\circ} - \theta \right) = cot\theta}\]
\[\boxed{\begin{matrix}
sin\left( 90^{\circ} + \theta \right) = cos\theta \\
cos\left( 90^{\circ} + \theta \right) = - sin\theta \\
tan\left( 90^{\circ} + \theta \right) = - cot\theta
\end{matrix}}\]
\[{sin( - \theta) = - sin\theta
}{cos( - \theta) = cos\theta
}{tan( - \theta) = - tan\theta
}{sin\left( 180^{\circ} - \theta \right) = sin\theta
}{cos\left( 180^{\circ} - \theta \right) = cos\theta
}{tan\left( 180^{\circ} - \theta \right) = tan\theta
}{sin\left( 180^{\circ} + \theta \right) = - sin\theta
}{cos\left( 180^{\circ} + \theta \right) = - cos\theta
}{tan\left( 180^{\circ} + \theta \right) = tan\theta
}{sin\left( 270^{\circ} - \theta \right) = - cos\theta
}{cos\left( 270^{\circ} - \theta \right) = - sin\theta
}{tan\left( 270^{\circ} - \theta \right) = cot\theta
}{sin\left( 270^{\circ} + \theta \right) = - cos\theta
}{cos\left( 270^{\circ} + \theta \right) = sin\theta
}{tan\left( 270^{\circ} + \theta \right) = - cot\theta
}{sin\left( 360^{\circ} - \theta \right) = - sin\theta
}{cos\left( 360^{\circ} - \theta \right) = cos\theta
}{tan\left( 360^{\circ} - \theta \right) = - tan\theta}\]
Illustration :
Find the value of
(i) \(cos\left( - 60^{\circ}
\right)\)
(ii) \(tan210^{\circ}\)
(iii) \(sin300^{\circ}\)
(iv) \(cos120^{\circ}\)
Sol.
(i) \(cos\left( - 60^{\circ} \right) =
cos60^{\circ} = \frac{1}{2}\)
(ii) \(tan210^{\circ} = \left( tan180^{\circ}
+ 30^{\circ} \right) = tan30^{\circ} = \frac{1}{\sqrt{3}}\)
(iii) \(sin300^{\circ} = sin\left( 270^{\circ}
+ 30^{\circ} \right) = - cos30^{\circ} = -
\frac{\sqrt{3}}{2}\)
(iv) \(cos120^{\circ} = sin\left( 180^{\circ}
- 60^{\circ} \right) = - cos60^{\circ} = - \frac{1}{2}\)
A few important
trigonometric formulae
| \[\begin{matrix}
& sin(A + B) = sinAcos\text{ }B + cosAsin\text{ }B \\
& sin(\text{ }A - B) = sinAcos\text{ }B - cosAsin\text{ }B \\
& tan(\text{ }A + B) = \frac{tanA + tanB}{1 - tanAtan\text{ }B} \\
& sin2\text{ }A = 2sin\text{ }Acos\text{ }A \\
& tan2\text{ }A = \frac{2tan\text{ }A}{1 - \tan^{2}\text{ }A}
\end{matrix}\] |
\[\begin{matrix}
& cos(A + B) = cosAcos\text{ }B - sinAsin\text{ }B \\
& cos(\text{ }A - B) = cosAcos\text{ }B + sinAsin\text{ }B \\
& tan(\text{ }A - B) = \frac{tanA - tanB}{1 + tanAtan\text{ }B} \\
& cos2\text{ }A = \cos^{2}\text{ }A - \sin^{2}\text{ }A \\
& cos2\text{ }A = 2\cos^{2}\text{ }A - 1 = 1 - 2\sin^{2}\text{ }A
\end{matrix}\] |
Small angle approximation :
\(\theta\) is very small and it must
be in radian when you are taking approximation.
\[\begin{matrix}
& sin\theta \simeq \theta,tan\theta \simeq \theta \\
& sin\theta \simeq tan\theta. \\
& cos\theta \simeq 1
\end{matrix}\]
Illustration :
Evaluate \(sin2^{\circ}\)
Sol. \(\ 2^{\circ} = 2 \times
\frac{\pi}{180}rad = \frac{\pi}{90}rad\)
Now
\[sin2^{\circ} = sin\left( \frac{\pi}{90}rad
\right) \simeq \left( \frac{\pi}{90} \right)\]
Illustration :
Evaluate \(sin2^{\circ}\left( 1 -
cos2^{\circ} \right)\)
Sol. \(Sin2^{\circ}\left( 1 - 1 +
2\sin^{2}1^{\circ} \right)\)
\[{2sin2^{\circ}\sin^{2}1^{\circ} \simeq
2\left( 2 \times \frac{\pi}{180^{\circ}} \right)\left(
\frac{\pi}{180^{\circ}} \right)^{2}
}{= 4\left( \frac{\pi}{180^{\circ}} \right)^{3}}\]
Practice Exercise
Q. 1 Find the value of
(i) \(cos\left( - 30^{\circ}
\right)\)
(ii) \(sin120^{\circ}\)
(iii) \(sin135^{\circ}\)
(iv) \(cos120^{\circ}\)
(v) \(sin270^{\circ}\)
(vi) \(cos270^{\circ}\)
Ans.
(i) \(\frac{1}{\sqrt{3}}\)
(ii) \(\frac{\sqrt{3}}{2}\)
(iii) \(\frac{1}{\sqrt{2}}\)
(iv) \(- \frac{\sqrt{3}}{2}\)
(v) -1
(vi) 0
Calculus
Introduction:
Suppose on your \(8^{\text{th}\text{~}}\) birthday at
midnight you measured your height and found it to be 120 cm . One year
later at midnight on your Eight birthday you again measure your height
& find it to be 132 cm . Now if we say rate of increase of your
height is \(12\text{ }cm/\) year it
does not mean that at the exact 11:59:59 PM you were 120 cm and as soon
as clock moved to 12:00 midnight you streched and became 132 cm .
Now if we express your rate of growth as \(1\text{ }cm/\) month we are not implying
that every month at midnight of \(1^{\text{st}\text{~}}\) you suddenly strech
by \(1\text{ }cm/\) month is just a
unit and the growth is a continuous process. If we assume you grow
uniformly at all times the rate simply implies that if you grow \(\Delta\) h in time \(\Delta\) t at some point of time, the ratio
\(\left( \frac{\Delta h}{\Delta t}
\right)\) will be \(12\text{
}cm/\) year or \(1\text{
}cm/month\) or whatever unit you may choose.
So we can calculate the rate of growth of height in a finite time
internal. If we calculate rate of growth \(\left( \frac{\Delta h}{\Delta t} \right)\)
in different time interval like
(i) Rate of growth per day \(\left(
\frac{\Delta h}{\Delta t} \right) = \frac{1}{30}\text{ }cm/\)
day
(ii) Rate of growth per hour \(\left(
\frac{\Delta h}{\Delta t} \right) = \frac{1}{30 \times 24}\text{
}cm/\) hour
(iii) Rate of growth per min \(\left(
\frac{\Delta h}{\Delta t} \right) = \frac{1}{30 \times 24 \times
60}\text{ }cm/min\)
Similarly if we want to calculate the rate of growth exactly at 12 O
'clock mid night then we take time interval \(\Delta t\) is zero. So in that time \(\Delta h\) is also zero becasue nothing can
change in zero time. So, rate of growth becomes \(\frac{0}{0}\), which is meaningless.
Now the question is how two find the rate of growth exactly at 12 O
'clock or at any instant of time.
Differential calculus play an important role to find the rate of
growth at any instant. The rate of growth at any instant is known as
instantaneous rate. In many situations in physics, it is sometimes
necessary to use the concept of instantaneous rate. The basic tool for
this is calculus, invented by Newton and Liebnitz independently. The use
of calculus is fundamental in the treatment of various problems in
physics.
Numerical interpretation:
Illustration :
A car moving on a horizontal road whose position changes with time
\(t\) as \(x
= 3t^{2} + 1\) compute its average speed (average rate of change
in position) \(\left( v_{\text{avg}\text{~}} =
\frac{\text{~}\text{change in position}\text{~}}{\text{~}\text{time
interval}\text{~}} = \frac{\Delta x}{\Delta t} \right)\)
between
(i) From 2 sec to 3 sec
(ii) From 2 sec to 2.1 sec
(iii) From 2 sec to 2.001 sec
(iv) From 2 sec to 2.0001 sec (v) at 2 sec (instantaneous rate of
change)
Sol. For \(t = 2sec\) to 3 sec , we
have \(\Delta t = 1sec\)
\[\begin{matrix}
& x(att = 3sec.) = 3(3)^{2} + 1 = 28\text{ }m \\
& x(\text{~}\text{at}\text{~}t = 2sec.) = 3(2)^{2} + 1 = 13\text{ }m
\\
& \Delta x = 28\text{ }m - 13\text{ }m = 15\text{ }m
\end{matrix}\]
Thus \(\ v_{\text{average}\text{~}} =
\frac{\Delta x}{\Delta t} = 15\text{ }m/1sec = 15{\text{ }ms}^{-
1}\)
(ii) 2 sec and 2.1 sec
Sol. For \(t = 2.1sec\), we have
\(\Delta t = 0.1sec\)
\[x = 3(2.1)^{2} + 1 = 14.23\text{ }m\
\text{~}\text{and}\text{~}\ \Delta x = 1.23\text{ }m\]
Thus \(v_{\text{average}\text{~}} =
\frac{\Delta x}{\Delta t} = 1.23\text{ }m/0.1sec = 12.3{\text{ }ms}^{-
1}\)
(iii) 2 sec and 2.001 sec ,
Sol. for \(t = 2.001sec\), we have
\(\Delta t = 0.001sec\)
\[x = 3(2.001)^{2} + 1 = 13.012003\text{
}m\ \text{~}\text{and}\text{~}\ \Delta x = 0.012003\text{
}m\]
Thus \(v_{\text{average}\text{~}} =
\frac{\Delta x}{\Delta t} = 0.012003\text{ }m/0.001sec = 12.003{\text{
}ms}^{- 1}\)
(iv) 2 sec and 2.00001 sec .
Sol. The student may verify that for \(t =
2.00001sec\)
\[v_{\text{avg}\text{~}} = 12.00003{\text{
}ms}^{- 1}\]
(v) Also find instantaneous rate of change in position (instantaneous
speed) at 2 sec.
\[v_{ins} = \frac{x_{2} - x_{l}}{t_{2} -
t_{l}}\]
here \(t_{1} = 2sec\). and also
\(t_{2} = 2sec\).
\[v_{ins} = \frac{3(2)^{2} + 1 - 3(2)^{2}
- 1}{2 - 2} = \frac{0}{0},\text{~}\text{It is
undefined.}\text{~}\]
So Liebnitz suggest try it like that
\[\begin{matrix}
& t_{I} = 2sec.,t_{2} = 2 + \Delta t \\
v_{\text{avg}\text{~}} = & \frac{3(2 + \Delta t)^{2} + 1 - 3(2)^{2}
- 1}{2 + \Delta t - 2} = \frac{\Delta t^{2} + 12\Delta 2}{\Delta t} =
\Delta t + 12
\end{matrix}\]
Then he said let's make \(\Delta t
\rightarrow 0\), means \(\Delta
t\) approaches zero not equal to zero. So, \(t_{2}\) almost becomes 2 sec . and the
\(v_{\text{avg}\text{~}}\) becomes
\(v_{\text{ins}\text{~}}\).
Liebnitz conclude that althrough the method is approximate but result is
exact.
In calculus notation
\[\begin{matrix}
v_{\text{ins}\text{~}} & \ = {Lim}_{\Delta t \rightarrow
0}v_{\text{avg}\text{~}} \\
v_{\text{ins}\text{~}} & \ = {Lim}_{\Delta t \rightarrow 0}(\Delta
t + 12) = 12\text{ }m/s \\
\because\ v_{\text{avg}\text{~}} & \ = \frac{\Delta x}{\Delta t} \\
v_{\text{inst}\text{~}} & \ = {Lim}_{\Delta t \rightarrow
0}\frac{\Delta x}{\Delta t} = \frac{dx}{dt}\text{~}\text{(it is knows as
derivative of}\text{~}x\text{~}\text{with respect
to}\text{~}t\text{~}\text{)}\text{~}
\end{matrix}\]
Illustration :
Suppose displacement \(y\) (t) (that
is, \(y\) as a function of \(t\) ) is given by
\[y(t) = t^{3}\]
Sol. Find velocity (dy/dt) at \(t =
3sec\).
Displacement at \(t + \Delta t\) is
\[\begin{matrix}
y(t + \Delta t) & \ = (t + \Delta t)^{3} \\
& \ = \left( t^{3} + 3t^{2}\Delta t + 3t\Delta t^{2} + \Delta t^{3}
\right)
\end{matrix}\]
hence displacement from \(t\) to
\(t + \Delta t\) is \(\Delta y\)
\[\Delta y = y(t + \Delta t) - y(t) =
\left( 3t^{2}\Delta t + 3t\Delta t^{2} + \Delta t^{3}
\right)\]
Substituting this into Equation (i) gives
\[\frac{dy}{dt} = \lim_{\Delta t
\rightarrow 0}\mspace{2mu}\frac{\Delta y}{\Delta t} = \lim_{\Delta t
\rightarrow 0}\mspace{2mu}\left\lbrack 3t^{2} + 3t\Delta t + \Delta
t^{2} \right\rbrack\]
Here we can see that if we take very small value of \(\Delta t\) then value of dy/dt will
approach \(3t^{2}\) as all other terms
will become negligible and impossible to measure by any instrument
available in this world.
hence,\(\ \frac{dy}{dt} = 3t^{2}\ \Rightarrow
\ \frac{dy}{dt} = v(\) at \(t = 3sec) =
3(3)^{2} = 27\text{ }m/s\)
Leibneiz derived some general formula for differentiation which is
written below.
Differentiation Formulae
Power rule: \(\frac{d}{dt}\left( t^{n}
\right) = nt^{n - 1}\)
\(\frac{d}{dt}(t) = 1\)
\(\frac{d}{dt}(sint) =
cost\)
\(\frac{d}{dt}(cost) = -
sint\)
\(\ \frac{d}{dt}\left( e^{t} \right) =
e^{t}\)
\(\frac{d}{dt}\left( \log_{e}t \right)
= \frac{1}{t};\ \left\lbrack \log_{e}t \equiv lnt
\right\rbrack\)
\(\frac{d}{dt}(tant) =
\sec^{2}t\)
\(\frac{d}{dt}(sect) =
secttant\)
Differentiation Rules : \(u\) and
\(v\) are functions of \(t\) i.e. \(u =
f(t)\) and \(v = g(t)\)
\(\frac{d}{dt}(c) = 0\)
Constant multiple rule: \(\frac{d}{dt}(cu) = c\frac{du}{dt}\)
where \(c\) : constant
Sum rule: \(\frac{d}{dt}(u + v) =
\frac{du}{dt} + \frac{dv}{dt}\) 4. Difference rule: \(\frac{d}{dt}(u - v) = \frac{du}{dt} -
\frac{dv}{dt}\)
Product rule \(:\frac{d}{dt}(uv) =
u\frac{dv}{dt} + v\frac{du}{dt}\) 6. Quotient rule: \(\frac{d}{dt}\left( \frac{u}{v} \right) =
\frac{v\frac{du}{dt} - u\frac{dv}{dt}}{v^{2}}\)
Example : Differentiate w.r.t. time.
(i) \(y = t^{2}\)
(ii) \(x = t^{3/2}\)
(iii) \(y = \frac{1}{\sqrt{t}}\)
(iv) \(x = 4t^{3}\)
(v) \(y = 2\sqrt{t}\)
(vi) \(y = 2t^{2} + t - 1\)
(vii) \(y = 3\sqrt{t} +
\frac{2}{\sqrt{t}}\)
(viii) \(y = t^{3}sint\)
(ix) \(x = te^{t}\)
(x) \(x = \sqrt{t}(1 - t)\)
Sol. (i) \(\frac{dy}{dt} =
2t\)
(ii) \(\frac{dx}{dt} =
\frac{3}{2}t^{1/2}\)
(iii) \(\frac{dy}{dt} = - \frac{1}{2}t^{-
3/2}\)
(iv) \(\frac{dx}{dt} = 12t^{2}\)
(v) \(\frac{dy}{dt} = 2\left( \frac{1}{2}t^{-
1/2} \right) = t^{- 1/2}\)
(vi) \(\frac{dy}{dt} = 4t + 1 + 0 = 4t +
1\)
(vii) \(\frac{dy}{dt} = 3t^{- 1/2} + 2\left( -
\frac{1}{2}t^{- 3/2} \right) = \frac{3}{\sqrt{t}} - t^{-
3/2}\)
(viii) \(\frac{dy}{dt} = 3t^{2}sint +
t^{3}cost\)
(ix) \(\frac{dx}{dt} = e^{t} + te^{t} =
e^{t}(1 + t)\)
(x) \(\frac{dx}{dt} = \frac{1}{2}t^{- 1/2} -
\frac{3}{2}t^{1/2} = \frac{1}{2\sqrt{t}} -
\frac{3}{2}\sqrt{t}\)
Example : Differentiate with respect to x
(i) \(y = xlnx\)
(ii) \(y = x^{2}e^{x}\)
(iii) \(y = \frac{sinx}{x}\)
(iv) \(y = \frac{3x^{2} +
2\sqrt{x}}{x}\)
Sol.
(i) \(\frac{dy}{dx} = x\left( \frac{1}{x}
\right) + \mathcal{l}nx = 1 + \mathcal{l}nx\)
(ii) \(\frac{dy}{dx} = 2xe^{x} + x^{2}e^{x} =
xe^{x}(2 + x)\)
(iii) \(y = x^{- 1}sinx\)
\[\frac{dy}{dx} = \left( - x^{- 2}
\right)sinx + x^{- 1}cosx\]
(iv) \(y = 3x + 2x^{- 1/2}\)
\[\frac{dy}{dx} = 3 + 2\left( - 1/2x^{-
3/2} \right) = 3 - x^{- 3/2}\]
The Chain Rule :
Suppose you are asked to differentiate the function
\[y = \sqrt{x^{2} + 1}\]
The differentiation formula you learned in the previous section of
this chapter do not enable you to calculate \(\frac{dy}{dx}\)
In fact, if we let \(y = \sqrt{u}\)
and let \(u = x^{2} + 1\),
Then we can evaluate \(\frac{dy}{du},\frac{du}{dx}\) easily using
the formula that we have learned in previous section.
\[\frac{dy}{du} = \frac{1}{2\sqrt{u}}\
\frac{du}{dx} = 2x
\]but our aim is to calculate \(\frac{dy}{dx}\) so we can write.
\[\frac{dy}{dx} =
\frac{dy}{du}\frac{du}{dx}\]
and its value will become
\[\begin{matrix}
\frac{dy}{dx} = \frac{1}{2\sqrt{u}} \cdot 2x\ \text{~}\text{Substituting
value of 'u' we will get}\text{~} \\
\frac{dy}{dx} = \frac{1}{2\sqrt{x^{2} + 1}} \cdot 2x =
\frac{x}{\sqrt{x^{2} + 1}}
\end{matrix}\]
Ex. \(1\ x = (at + b)^{n}\) where
\(a,b\) and \(n\) are a real number then \(\frac{dx}{dt} = an(at + b)^{n - 1}\).
Sol. \(\ u = at + b\) and \(x = u^{n}\)
\[\begin{matrix}
& \frac{dx}{du} = nu^{n - 1} \\
& \frac{du}{dt} = a \\
& \frac{dx}{dt} = \frac{dx}{du} \times \frac{du}{dt} = n(u)^{n - 1}
\times a = an(at + b)^{n - 1}
\end{matrix}\]
Ex. 3 It \(x = \sin^{2}\theta\),
then find \(\frac{dx}{dt}\) where \(\frac{d\theta}{dt} = \omega\)
Sol. \(\frac{dx}{d\theta} =
2(sin\theta)(cos\theta) = sin2\theta\)
\[\begin{matrix}
& \frac{dx}{dt} = \frac{dx}{\text{ }d\theta} \cdot \frac{\text{
}d\theta}{dt} \\
& \frac{dx}{dt} = sin2\theta \cdot \omega
\end{matrix}\]
Application in physics :
\[velocity(v) = \frac{dx}{dt},\
\text{~}\text{acceleration}\text{~}(a) = \frac{dv}{dt};\ \left( a =
\frac{dv}{dt} = \frac{dv}{dx}\frac{dx}{dt} = \frac{dv}{dx}v =
v\frac{dv}{dx} \right)\]
Force \((F) =\) rate of change of
momentum \(= \frac{dp}{dt}\);
Current \((i) = \frac{dq}{dt};\ \)
angular speed \((\omega) =
\frac{d\theta}{dt};\)
angular acceleration \((\alpha) =
\frac{d\omega}{dt}\ ;\left( \alpha = \frac{d\omega}{dt} =
\frac{d\omega}{d\theta}\frac{d\theta}{dt} =
\omega\frac{d\omega}{d\theta} \right)\)
Ex. The radius of a circle is increasing at a rate \(\frac{dr}{dt} = \alpha\). Find the rate at
which its area is increasing when radius is equal to 3 m .
Sol area of cricle \((A) = \pi
r^{2}\)
\[\begin{matrix}
& \frac{dA}{dt} = \pi(2r)\frac{dr}{dt} = 2\pi r\left( \frac{dr}{dt}
\right) = 2\pi r(\alpha) \\
& \left( \frac{dA}{dt} \right)_{atr = 3\text{ }m} =
6\pi\alpha{\text{ }m}^{2}/sec.
\end{matrix}\]
Derivative of a Vector:
\[\overrightarrow{v} =
\frac{d\overrightarrow{r}}{dt},\overrightarrow{a} =
\frac{d\overrightarrow{v}}{dt};\overrightarrow{F} =
\frac{d\overrightarrow{p}}{dt};\overrightarrow{\alpha} =
\frac{d\overrightarrow{\omega}}{dt}\]
Ex. \(\overrightarrow{r} = 2t\widehat{i} +
3t^{2}\widehat{j}\). Find \(\overrightarrow{v}\) and \(\overrightarrow{a}\) where \(\overrightarrow{v} =
\frac{d\overrightarrow{r}}{dt},\overrightarrow{a} =
\frac{d\overrightarrow{v}}{dt}\)
Sol. \(\overrightarrow{v} =
\frac{d\overrightarrow{r}}{dt} = 2\widehat{i} + 6t\widehat{j}\text{
}m/s\)
\[\overrightarrow{a} =
\frac{d\overrightarrow{v}}{dt} = 0 + 6\widehat{j}\text{
}m/s^{2}\]
Physical meaning of \(\frac{\mathbf{dy}}{\mathbf{dx}}\)
The ratio of small change in the function \(y\) and the varibalbe \(x\) is called the average rate of change of
\(y\) w.r.t.x. For example, if a body
cover a small distance \(\Delta s\) in
small time \(\Delta t\), then average
velocity of the body, \(v_{av} = \frac{\Delta
s}{\Delta t}\) Also, if the velocity of a body changes by a small
amount \(\Delta v\) in small time \(\Delta t\), then average acceleration of
the body, \(a_{av} = \frac{\Delta v}{\Delta
t}\)
When \(\Delta x \rightarrow 0\)
The limiting value of \(\frac{dy}{dx}\)
is \({Lim}_{\Delta x \rightarrow
0}\frac{\Delta y}{\Delta x} = \frac{dy}{dx} =
tan\theta\)
\[= \text{~}\text{slope of the
tangent}\text{~}\]

It is called the instantaneous rate change of \(y\) w.r.t.x.
The differentiation of a function w.r.t. a veriable imples the
instantaneous rate change of the funcaiton w.r.t. that variable.
Like wise, instantaneous velocity of the body, \((v) = {Lim}_{\Delta t \rightarrow 0}\frac{\Delta
s}{\Delta t} = \frac{ds}{dt}\)
and instantaneous acceleration of the body \(\
\) (a) \(= {Lim}_{\Delta t \rightarrow
0}\frac{\Delta v}{\Delta t} = \frac{dv}{dt}\)
Maxima & Minima :
Maxima & minima of a function \(y =
f(x)\)
for maximum value \(\frac{dy}{dx} = 0\
\) and \(\frac{d^{2}y}{{dx}^{2}}
=\) negative
for minimum value \(\frac{dy}{dx} = 0\
\) and \(\frac{d^{2}y}{dx^{2}}
=\) positive
Ex. Find minimum value of \(y = 25x^{2} - 10x
+ 5\).
Sol. For maximum/minimum value \(\frac{dy}{dx}
= 0 \Rightarrow 50x - 10 \Rightarrow x = \frac{1}{5}\)
Now at \(x = \frac{1}{5},\frac{{\text{
}d}^{2}y}{{dx}^{2}} = 50\), which is positive
So \(y_{\text{min}\text{~}} = 25\left(
\frac{1}{5} \right)^{2} - 10\left( \frac{1}{5} \right) + 5 = 1 - 2 + 5 =
4\)
Ex. A body is moving vertically upwards under gravity such that its
position from ground is given as \(y = ut -
\frac{1}{2}{gt}^{2}\). Find the max height reached by body.
Sol. \(\frac{dy}{dt} = u - gt = 0,t =
\frac{u}{g}\)
\(\frac{d^{2}y}{{dx}^{2}} = - g <
0\) (which is negative). so we get maximum height \(y_{\max}\) at \(t
= \frac{u}{g}\sec\).
\[{y_{\text{max}\text{~}} = u\left(
\frac{u}{g} \right) - \frac{1}{2}\text{ }g\left( \frac{u}{g} \right)^{2}
}{= \frac{u^{2}}{2\text{ }g}}\]
Equation of Trajectory :
It is path traversed by a particle, independent of time
parameter.
Ex. Find the equation of trajectory for the particle moving in circular
path as shown.

\[x = rcos\theta\ y = rsin\theta\ x^{2} +
y^{2} = r^{2}\ \Rightarrow \ x^{2} + y^{2} = 1\]
Integration or Antiderivative
:
So far we have studied as how to find velocity of a particle when its
position is given. Now if we know the velocity of a particle and we
might wish to know its position at any given time or an engineer who can
measure the variable rate at which water is leaking from a tank wants to
know the amount leaked over a certain time period. This reverse process
is called antiderivative of integration.
There are two types of integration :
(a) Indefinite integration (b) Definite integration.
(a) Indefinite integration
Since we know that, \(\Delta t = t_{2} -
t_{1}\)
Now, when time \(t_{2}\) approaches
\(t_{1};\Delta t \rightarrow dt\)
To remind you, \(v = \underset{\Delta t
\rightarrow 0}{Lim}\frac{\Delta x}{\Delta t} =
\frac{dx}{dt}\)
So, If we integrate \(dt\), we should
get \(t_{2} - t_{1}\); i.e. \(\int_{}^{}\ dt = t_{2} - t_{1}\)
Similarly, \(\int_{}^{}\ dx = x_{2} -
x_{1}\)
but since the differentiation of a constant becomes zero, so i.e. why we
can not retrive the value of that constant.
\(\therefore\) We should write \(\int_{}^{}\ dx = x + c\).
Where 'c' is integration constant.
Integration Formulae :
\(\int x^{n}dx = \frac{x^{n + 1}}{n +
1} + c\lbrack n \neq - 1\rbrack\)
\(\ \int(ax + b)^{n}dx =
\frac{1}{a}\frac{(ax + b)^{n + 1}}{n + 1} + c\)
\(\int cosxdx = sinx +
c\)
\(\int sinxdx = - cosx +
c\)
\(\ \int e^{x}dx = e^{x} +
c\)
\(\ \int\frac{1}{x}dx = ln|x| +
c,\lbrack x \neq 0\rbrack\)
\(\ \int cos(ax + b)dx =
\frac{1}{a}sin(ax + b) + c\)
\(\ \int sin(ax + b)dx = -
\frac{1}{a}cos(ax + b) + c\)
\(\int e^{(ax + b)}dx =
\frac{1}{a}e^{(ax + b)} + c\)
\(\ \int\frac{1}{(ax + b)}dx =
\frac{1}{a}ln|(ax + b)| + c\)
Rules of Integration :
\(\ \int kudx = k\int udx\)
where is k constant.
\(\int(u + v)dx = \int udx + \int
vdx\)
Ex. 1 Evaluate indefinite integration.
(i) \(x = \int dt\)
(ii) \(x = \int tdt\)
(iii) \(x = \int(2t)dt\)
(iv) \(x = \int\left( t^{2}
\right)dt\)
(v) \(x = \int\left( - \frac{2}{t^{3}}
\right)dt\)
Sol.
(i) \(x = t + c\)
(ii) \(x = \frac{t^{2}}{2} + c\)
(iii) \(x = \frac{2t^{2}}{2} + c = t^{2} +
c\)
(iv) \(x = \frac{t^{3}}{3} + c\)
(v) \(x = - 2\int t^{- 3}dt \Rightarrow x = -
2\left( \frac{t^{- 2}}{- 2} \right) + c = t^{- 2} + c\)
Where 'c' is integration constant.
(b) Definite integration.
When a function is integrated between a lower limit and an upper
limit, it is called a definite integral.
If \(\frac{d}{dx}(f(x)) = g(x)\)
then \(\int g(x)dx\) is called
indefinite integral and \(\int_{a}^{b}\mspace{2mu} g(x)dx = \lbrack f(b) -
f(a)\rbrack\) is called definite integral.
Here, a and b are called lower and upper limits of the variable x
.
After carrying out integration, the result is evaluated between upper
and lower limits as explained below :
\(\int_{x_{1}}^{x_{2}}\mspace{2mu} g(x)dx =
f\left( x_{2} \right) - f\left( x_{1} \right) =\) Area under the
curve.
Ex. Evaluate the integral :
(i) \(\int_{1}^{5}\mspace{2mu}
x^{2}dx\)
(ii) \(\int_{0}^{1}\mspace{2mu}
t^{2}dt\)
(iii) \(\int_{3}^{5}\mspace{2mu}
tdt\)
(iv) \(\int_{0}^{1}\mspace{2mu}
t^{x_{1}}dx\)

Sol. (i) \(\int_{1}^{5}\mspace{2mu} x^{2}dx
= \left\lbrack \frac{x^{3}}{3} \right\rbrack_{1}^{5} =
\frac{1}{3}\left\lbrack x^{3} \right\rbrack_{1}^{5} = \frac{1}{3}\left(
(5)^{3} - (1)^{3} \right) = \frac{1}{3}(125 - 1) =
\frac{124}{3}\)
(ii) \(\int_{0}^{1}\mspace{2mu} t^{2}dt =
\left\lbrack \frac{t^{3}}{3} \right\rbrack_{0}^{1} =
\frac{1}{3}\)
(iii) \(\int_{3}^{5}\mspace{2mu} tdt =
\left\lbrack \frac{t^{2}}{2} \right\rbrack_{3}^{5} = \frac{5^{2} -
3^{2}}{2} = 8\)
(iv) \(\int_{0}^{1}\mspace{2mu} t^{3/2}dx =
\left\lbrack \frac{t^{5/2}}{5/2} \right\rbrack_{0}^{1} =
\frac{2}{5}\)
Practise Exercise :
(i) \(\int_{R}^{\infty}\mspace{2mu}\frac{GMm}{x^{2}}dx\)
(ii) \(\int_{u}^{v}\mspace{2mu}
Mvdv\)
(iii) \(\int_{0}^{\pi/2}\mspace{2mu}
cosxdx\)
Ans.
(i) \(\frac{GMm}{R}\)
(ii) \(\frac{1}{2}M\left( v^{2} - u^{2}
\right)\)
(iii) 1
Ex. 3 Find displacement of a particle in 1-D if its velocity is \(v = (2t - 5)m/s\), from \(t = 0\) to \(t =
4\) sec.
Sol. \(\frac{dx}{dt} = 2t - 5\)
\[{\int_{x_{1}}^{x_{2}}\mspace{2mu} dx =
\int_{0}^{4}\mspace{2mu}(2t - 5)dt
}{x_{2} - x_{1} = \left( t^{2} - 5t \right)_{0}^{4}
}\]displacement \(= 16 - 20 = - 4\text{
}m\)
Graphical Interpretation :
Since \(\frac{dx}{dt} = v \Rightarrow cdx =
vdt\ \int dx = \int vdt\)
\[\begin{array}{r}
\therefore\ x_{2} - x_{1} = \int_{}^{}\ vdt\#(1)
\end{array}\]
Now, we have to understand the meaning of \(\int_{}^{}\ vdt\)
Graphically, it is equivalent to finding the area under a curve. Suppose
the \(v - t\) graph for a particle is
as shown in Fig. given below. We want to find the displacement for time
interval \(t_{i} - t_{f}\). Let us
divide the time interval \(t_{i} -
t_{f}\) into many small intervals, each of duration \(\Delta t\) and if \(\Delta t \rightarrow dt\). We can find the
displacement ' dx ' of the particle during any small interval, such as
the one shaded in figure given below, by \(dx
= vdt\), where ' v ' is the velocity in that interval. Therefore,
the displacement during this small interval is simply the area of the
shaded rectangle. The total displacement for the interval \(t_{i} - t_{f}\) is the sum of the areas of
all the rectangles from \(t_{i}\) to
\(t_{f}\). But by adding up it means
integrating.
Thus, Area under curve \(= \int_{}^{}\
v\) dt ... (2)
Hence from (1) & (2), A rea under curve \(= x_{2} - x_{1} =\) displacement.

Ex. 1 From the v versus t graph of figure (a) the time(s) at which
the particle is at rest (b) at what time, if any does the particle
reverse the direction of its motion? (c) The distance and displacement
of the particle from \(t = 0\text{ }s\)
to \(t = 6\text{ }s\).

Sol. (a) \(t = 0,3sec\)
(b) \(t = 3sec\)
(c) displacement \(= - \frac{1}{2}(3 \times 4)
+ \frac{1}{2}(3 + 2)\)
\[\begin{array}{r}
= - 6 + 10 = 4\text{ }m\#(4)
\end{array}\]
distance \(= \left| - \frac{1}{2}(3 \times
4) \right| + \left| \frac{1}{2}(3 + 2)(4) \right|\)
\[= 6 + 10 = 16\text{ }m\]
Finding
position and trajectory if velocity is known:
Lets take velocity vector \(\overrightarrow{v} = v_{x}\widehat{i} +
v_{y}\widehat{j} + v_{z}\widehat{k}\)
\[{\Rightarrow v_{x} = \frac{dx}{dt};v_{y} =
\frac{dy}{dt};y_{z} = \frac{dz}{dt}
}{\therefore\ x = \int v_{x}dt;y = \int v_{y}dt\ z = \int
v_{z}dt}\]
Ex. 1 Find the equation of trajectory of a particle whose velocity
components are \(v_{x} = 2x + 1,v_{y} = 2y +
3\)
Given that particle starts from rest from origin.
Sol. \(\ v_{x} = 2x + 1\),
\[{\frac{dx}{dt} = 2x + 1
}{\int_{0}^{x}\mspace{2mu}\frac{dx}{2x + 1} = \int_{0}^{t}\mspace{2mu}
dt}\]
\[\begin{array}{r}
\frac{1}{2}ln(2x + 1) = t\#(1)
\end{array}\]
\[{v_{y} = 2y + 3
}{\int_{0}^{y}\mspace{2mu}\frac{dy}{2y + 3} = \int_{0}^{t}\mspace{2mu}
dt}\]
\[\begin{array}{r}
\frac{1}{2}ln\frac{(2y + 3)}{3} = t\#(2)
\end{array}\]
from (1) and (2)
\[{\frac{1}{2}ln(2x + 1) =
\frac{1}{2}ln\frac{(2y + 3)}{3}
}{2x + 1 = \frac{(2y + 3)}{3}
}{y = 3x}\]
Binomial Approximation :
For \(x \ll 1\), the following
approximation can be used :
\[(1 + x)^{n} \approx 1 + nx\]
Ex Find \((1.03)^{1/3}\)
Sol. \(\ (1 + 0.03)^{1/3}\left( x = 0.03\&
n = \frac{1}{3} \right)\)
\[\simeq 1 + \frac{0.03}{3} =
1.01\]
Solved Example
Q. 1 The angle subtended by the moon's diameter at a point on the
earth is about \({0.50}^{\circ}\). Use
this and the fact that the moon is about 384000 km away to find the
approximate diameter of the moon.

Sol. \(tan\theta \simeq \theta =
\frac{D}{r_{m}}\theta\) is radians
\(180^{\circ} = \pi\)-radians

\[{\Rightarrow \ {0.5}^{\circ} =
\frac{\pi}{180} \times \frac{1}{2}rad = \frac{\pi}{360}rad
}{\Rightarrow \ D = \theta \cdot r_{m}
}{= \frac{\pi}{360} \times 384000\text{ }km = 3350\text{ }km
}\]Q. 2 Find \(\frac{dx}{dt}\)
(derivation of \(x\) with respect to
\(t\) )
(i) \(x = \left( t^{2} + 1
\right)^{3}\)
(ii) \(x = sin2t\)
Sol. (i) \(\frac{dx}{dt} = 3\left( t^{2} +
1 \right)^{2}(2t)\)
\[= 6t\left( t^{2} + 1 \right)^{2}
\](ii) \(\frac{dy}{dt} =
2cos2t\)
Q. 3 Find the derivative of \(y(x) = x^{3}/(x
+ 1)^{2}\) with respect to \(x\).
Sol. We can rewrite this function as \(y(x)
= x^{3}(x + 1)^{- 2}\) and apply Equation ()
\[{\frac{dy}{dx} = (x + 1)^{-
2}\frac{d}{dx}\left( x^{3} \right) + x^{3}\frac{d}{dx}(x + 1)^{- 2}
}{= (x + 1)^{- 2}3x^{2} + x^{3}( - 2)(x + 1)^{- 3}
}{\frac{dy}{dx} = \frac{3x^{2}}{(x + 1)^{2}} - \frac{2x^{3}}{(x +
1)^{3}}
}\]Q. 4 The velocity of particle is given by \(v = \sqrt{gx}\). Find its acceleration.
Sol. \(\ \frac{dv}{dt} = \frac{1}{2}(gx)^{-
1/2}\left( \text{ }g\frac{dx}{dt} \right)\)
\[{= \frac{1}{2}(gx)^{- 1/2}gv
}{= \frac{1}{2}\text{ }g
}\]Q. 5 If \(\overrightarrow{r} =
\lbrack ucos\theta(\widehat{i}) + usin\theta(\widehat{j})\rbrack t +
\frac{1}{2}\text{ }g( - \widehat{j})t^{2}\) then calculate
equation of trajectory.
Sol. \(\ x = ucos\theta t\& y =
usin\theta t - \frac{1}{2}gt^{2}\)
\[\begin{matrix}
& y = u\left( \frac{x}{ucos\theta} \right) - \frac{1}{2}\text{
}g\left( \frac{x}{ucos\theta} \right)^{2} \\
& y = xtan\theta - \frac{{gx}^{2}}{2u^{2}\cos^{2}\theta}
\end{matrix}\]
Q. 6 Find the value of definite integral: \(\int_{0}^{\pi}\mspace{2mu}\left( \frac{\pi t}{2} -
\frac{t^{2}}{2} \right)dt\)
Sol. \(\ \int_{0}^{\pi}\mspace{2mu}\left(
\frac{\pi t}{2} - \frac{t^{2}}{2} \right)dt\)
\[\begin{matrix}
& \ = \left( \frac{\pi}{2}\left( \frac{t^{2}}{2} \right) -
\frac{t^{3}}{6} \right)_{0}^{\pi} \\
& \ = \frac{\pi^{3}}{4} - \frac{\pi^{3}}{6} = \frac{\pi^{3}}{12}
\end{matrix}\]
Q. 7 The velocity of a body moving in a straight line is given by
\(v = \left( 3x^{2} + x \right)m/s\).
Find acceleration at \(x = 2\text{
}m\).
Sol. \(\ v = \left( 3x^{2} + x
\right)\)
\[\begin{matrix}
& \frac{dv}{dx} = 6x + 1 \\
& a = v\frac{dv}{dx} = \left( 3x^{2} + x \right)(6x + 1) \\
& \text{~}\text{at}\text{~}x = 2m \\
& a = \left( 3 \times 2^{2} + 2 \right)(6 \times 2 + 1) = 182\text{
}m/s^{2}
\end{matrix}\]
Q. 8 Find \((104)^{1/2}\)
Sol. \((100 + 4)^{1/2}\)
\[\begin{matrix}
& \ = 10\lbrack 1 + 0.04\rbrack^{1/2} \\
& \ \simeq 10\lbrack 1 + 0.02\rbrack = 10.2
\end{matrix}\]